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Abstract

We propose a three-index formulation for E-VRP with Non-Linear charging and Load-Dependent discharging
(E-VRP-NL-LD), and an Adaptive Large Neighborhood Search (ALNS) algorithm to solve the E-VRP-NL-
LD and E-VRP-NL-LD with Capacitated Charging Stations (E-VRP-NL-LD-CCS). Existing implementa-
tions of EVRP duplicate charging station nodes which enables the modelling of EVRP using extended VRP
formulations. Two limitations of such an approach are: (i) the number of such duplications is not known a
priori, and (ii) the size of the problem increases. In our formulation, we allow multiple visits to a charging
station without duplicating nodes. We propose five new operators for ALNS which are tested on 120 in-
stances each of E-VRP-NL and E-VRP-NL-LD, and 80 instances of E-VRP-NL-LD-CCS. Results show that
our ALNS outperforms the existing algorithms improving the solution in 63% of the instances and match-
ing the best known solution in 31% of the instances. Results also show that considering load-dependent
discharge is critical to optimally solve E-VRP.

Keywords: Adaptive large neighborhood search, Electric vehicle routing problem, Non-linear charging,
Partial charging, Load-dependent discharging.

1. Introduction

According to the Paris agreement (UNCCC, 2018), 55 countries have agreed to reduce the overall Green-
house Gases (GHGs) emissions by at least 55%, and many countries who are not part of Paris agreement
have set goals to reduce GHGs up to 40% by 2030. It is expected that government worldwide may impose
restrictions on the road transport sector to achieve these goals since this sector contributes to 20% of GHGs
worldwide (International Energy Agency, 2018). Near zero well-to-wheel emissions can be achieved with
Electric Vehicles (EVs) using electricity generated from renewable sources. Hence, EVs running on renew-
able energy is the foremost sustainable alternative to fossil-fuel driven vehicles. However, limited driving
range and long charging times are hindering the growth of EVs (Hidrue et al., 2011; Carley et al., 2013).
These issues also pose challenges to logistics firms’ vehicle scheduling and route planning.

Recently, many studies (Schneider et al., 2014; Bruglieri et al., 2015; Keskin and Çatay, 2016; Montoya
et al., 2017) have focused on the Electric Vehicle Routing Problem (E-VRP). E-VRP extends the classic
Vehicle Routing Problem (VRP) by considering a limited driving range and charging times of Electric
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Vehicles (EV). The concept of refueling in vehicle routing problems is not new. The study by Ichimori et al.
(1981, 1983) was the first to introduce the concept of vehicles taking detours to refuel en-route. E-VRP
differs from the vehicle refueling problem since it considers longer “refueling” (charging) times. Conrad
and Figliozzi (2011) formulated a Recharging Vehicle Routing Problem (RVRP), where specific customer
vertices also act as CSs. They assume that the charging of vehicles can happen while serving customers,
and the quantum of recharge is a fixed proportion of battery capacity. As expected, their results showed
that distance traveled and the number of vehicles increases with longer charging times and lower range.
Schneider et al. (2014) is the first study to propose a formulation for the E-VRP with Time Windows
(E-VRPTW). A limitation in their study is that vehicles always leave the CS fully charged. Instead of
minimizing distance, the study by Bruglieri et al. (2015) considered battery level as a decision variable and
minimized the weighted sum of total vehicles used, waiting time, charging time, and travel time. Unlike
Schneider et al. (2014), they consider a partial charging policy. Their model improved the solution with
respect to the total waiting time, charging time, and travel time for the same distance traveled and the
number of vehicles used. Later, Keskin and Çatay (2016) proposed an Adaptive Large Neighborhood Search
(ALNS) with Simulated Annealing (SA) acceptance criterion for the E-VRPTW considering partial charging.
Based on their testing of ALNS on the E-VRPTW instances from Schneider et al. (2014), it is shown that
allowing partial charging helps in achieving a better solution quality. Felipe et al. (2014) formulated a Green
Vehicle Routing Problem with Multiple Technologies and Partial Recharges (GVRP-MTPR) to minimize a
weighted sum of charging costs at the depot, CSs, and fixed costs associated with battery cycles. They have
considered a fixed stopping time at each CS, but a variable charging time based on the charging technology
offered by the CS. This restricts the degree of partial recharges to a few preset levels. All the above studies
used node-duplication and allowed unlimited simultaneous charging operations to use existing VRP models
for solving E-VRP. Bruglieri et al. (2019) overcome the unlimited simultaneous charging operations issue by
duplicating the chargers at CS in addition to CS itself.

Unlike the previous studies that considered a constant or linear charging rate, Montoya et al. (2017)
realistically model the charging of vehicles via non-linear functions while accounting for various charging
technologies. They call it the Electric Vehicle Routing Problem with Non-Linear charging (E-VRP-NL).
E-VRP-NL assumes that all the CSs can handle an unlimited number of EVs simultaneously, EVs can
carry an unlimited load, and EVs will always leave the depot with a full charge. Since battery capac-
ity limits the range of EVs, they may have to take a detour en-route to visit a CS. These EVs can be
recharged either fully or partially at any of the CSs. E-VRP-NL considers three types of CSs based on
the charging technology: slow (11kW), moderate (22kW), and fast (44kW). Figure 1 shows the piecewise
linear approximation of charging functions for a 16kWh battery. Instead of fixing the number of visits to a
CS (β), Montoya et al. (2017) solved the Mixed-Integer Linear Programming (MILP) model iteratively by
incrementing the values of β. They stop the iterations when there is no improvement between successive
iterations or when the time runs out (100 hours). This methodology increases the complexity of the problem
with an increase in β yet does not guarantee optimal solutions (Froger et al., 2019). Froger et al. (2019)
introduced two formulations for E-VRP-NL. The first formulation uses arc-duplication similar to Koyuncu
and Yavuz (2019), and as expected, it outperforms the traditional node-duplicating formulation. However,
it still does not guarantee optimality. The second formulation is path-based, which allows multiple visits to
a CS and guarantees optimality. But, it requires path enumeration, where the number of paths could grow
exponentially and become intractable for larger instances. They report solutions only up to 20 customer in-
stances. They also proposed a labeling algorithm for finding the optimal charging decisions for a given route.

All the studies mentioned above assume a linear discharge with distance irrespective of the load carried.
This is an unrealistic assumption and does not hold good in a real-world scenario. Considering load in
discharge calculations can significantly affect paths where heavier shipments are offloaded earlier to reduce
the overall energy consumption (Suzuki, 2011). In this paper, we propose an arc-based MILP formulation
that can be solved directly using standard optimizers and can find feasible solutions for up to 40 customer
instances. Moreover, our model considers load in discharge calculations and allows multiple visits to a CS
without node duplication. We also propose an ALNS heuristic that simultaneously determines the routes
and charging decisions. We extend the proposed ALNS heuristic to consider capacity restrictions at charging
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Figure 1: Piecewise linear approximation for different types of CS charging an EV with a battery of 16 kWh (adopted from
Montoya et al. (2017))

.

stations.
The main contributions of this paper are: i) introduction of a new variant of E-VRP with load-dependent

discharge and non-linear charging; ii) formulation of an arc-based three index Mixed-Integer Linear Pro-
gramming (MILP) model for E-VRP-NL-LD that allows multiple visits to a CS; iii) demonstration of better
performance of the proposed MILP for E-VRP-NL in comparison to existing models; iv) development of
a modified ALNS algorithm delivering improved performance with new removal and insertion operators
specific to E-VRP-NL-LD; and v) demonstration of the importance of considering load-dependent discharge
through computational results.

The organization of the paper is as follows: section 3 introduces a MILP for E-VRP-NL-LD; section 4
introduces the ALNS heuristic for E-VRP-NL-LD. Section 5 presents the test instances and discusses the
computational results. Finally, section 6 describes the conclusions.

2. Estimation of Power Required

For a vehicle to move from a state of rest, it has to overcome frictional resistance, drag resistance, and
rolling resistance. The power required to overcome these resistances is estimated as follows:

P =
(Ma+Mg sin θ +MgCr cos θ + 0.5CdρAv

2)v

1000ε
, (1)

where v is the speed (m/s), a is acceleration (m/s2), M is the gross vehicle weight (kg), g is the gravitational
constant (m/s2), θ is the road grade angle in degrees, ρ is the air density (kg/m3, typically 1.2041), A is the
frontal surface area (m2), Cd is the coefficient of aerodynamic drag, Cr is the coefficient of rolling resistance,
ε is the vehicle drive train efficiency, P is the second-by-second power required to overcome the resistances
(kW ). We consider that all vehicles travel at a fixed speed (40 kmph) and on level ground (θ = 0). Upon
substituting these values, equation (1) reduces to

P =
(MgCr + 0.5CdρAv

2)v

1000ε
, (2)
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Equation (2) is rewritten as a linear function of load in equation (3):

P = Γ + ΞM (3)

Where, Γ =
0.5CdρAv

3

1000ε
is a constant and Ξ =

gCrv

1000ε
is the coefficient of weight, M.

We use the values mentioned in table 1 for the parameters discussed above. These values were selected
such that they are close to real-world data and at the same time energy consumption for a vehicle with
half-load matches the consumption rate of 125 wh/km (used in Montoya et al. (2017) instances). The
consumption rate of 125 wh/km is used in cases where the load is not considered.

Table 1: Vehicle parameters used in energy consumption estimation

ρ Cd A v ε g Cr

1.2041 0.48 2.3301 11.112 0.89 9.81 0.01

The values of Γ and Ξ can be obtained by using the data mentioned in the above table, and the only
unknown gross vehicle weight (M) is a variable in the problem formulation.

3. Problem Description

The Electric Vehicle Routing Problem with Non-Linear charging and Load-Dependent discharging (E-
VRP-NL-LD) is defined on a directed graph G = (V,E), where V = {0}∪C ∪F is the set of vertices and E
= {(i, j) : i, j ∈ V, i 6= j} be the set of edges connecting vertices of V . The set of vertices has three subsets:
C is the set of customers, F is the set of Charging Stations (CSs), and {0} denotes the depot. The depot
has an unlimited fleet of homogeneous EVs with a battery of capacity Q (expressed in kWh) and maximum
tour duration of Tmax. All the chargers in a CS are of the same type. Let B = {0, 1, 2, 3} be the set of
breakpoints associated with the piecewise linear approximation of the charging curve (as shown in Figure 1).
Let glb and alb be the charging time and state of charge corresponding to breakpoint b ∈ B at a CS l. Let
si and ∆i be the service time and demand at a customer vertex i respectively. Let τij be the travel time
between vertices i and j

Our MILP formulation uses the following decision variables: variable xlij is a binary variable and is equal

to 1 only if an EV travels from vertex i to j via l ∈ F ∪ {D}. Note that variable xDij represents a direct arc

from i to j. Variables tlij , u
l
ij and ylij track the time, load, and state of charge when an EV arrives at vertex

j ∈ C†(C† = C ∪ {0}). Variables σl
ij and ς lij specify the charge levels when an EV arrives at and departs

from l ∈ F , and φlij and πl
ij are the associated charging times. Variable λlij = πl

ij − φlij gives the charging

time of a vehicle traveling from i to j stopping en route at a CS l ∈ F . Variables $lb
ij and ρlbij are equal to 1

if the charge level is between al,b−1 and al,b, with b ∈ B\{0}, when an EV arrives at and departs from CS
l ∈ F , respectively. Finally, variables αlb

ij and γlbij are fractional values which help in determining the part
of the piecewise linear approximation in which the arrival and departure charges are located. The MILP
formulation follows:

min
∑
i∈C†

∑
j∈C†

(
xDijτij +

∑
l∈F

(
xlij(τil + τlj) + λlij

))
(4)

Subject to constraints:
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for visiting customers exactly once: ∑
j∈C†
i 6=j

∑
l∈F∪{D}

xlij = 1 ∀i ∈ C (5)

for conserving flow: ∑
j∈C†
i6=j

∑
l∈F∪{D}

xlij =
∑
j∈C†
i 6=j

∑
l∈F∪{D}

xlji ∀i ∈ C (6)

for tracking arrival time:

∑
j∈C†
j 6=i

 ∑
l∈F∪{D}

tlij − τijxDij −
∑
m∈F

((τim + τmj)x
m
ij + λmij )

 ≥ ∑
j∈C†
j 6=i

∑
n∈F∪{D}

tnji + si ∀i ∈ C (7)

∑
l∈F∪{D}

tl0j − τ0jxD0j −
∑
m∈F

((τ0m + τmj)x
m
oj + λm0j) ≥ 0 ∀j ∈ C (8)

tlij ≤ Tmaxx
l
ij ∀i ∈ C†, j ∈ C†, l ∈ F ∪ {D} (9)

for tracking state of charge:

ylij ≤ Qxlij ∀i ∈ C†, j ∈ C†, l ∈ F ∪ {D} (10)

yD0j = (Q− Γ)xD0j − ΞuD0j ∀j ∈ C (11)

yl0j = ς l0j − (Γxl0j + Ξul0j) ∀l ∈ F, j ∈ C (12)∑
l∈F

(ylij + Γxlij + Ξulij) ≤
∑
l∈F

ς lij ∀i ∈ C, j ∈ C† (13)∑
j∈C†
i 6=j

(yDij + ΓxDij + ΞuDij) ≤
∑
j∈C†
i6=j

∑
m∈F

ymji ∀i ∈ C (14)

for determining charge on arrival:∑
i∈C†
i 6=j

(σl
ji + Γxlji + Ξulji) ≤

∑
i∈C†
i6=j

∑
m∈F∪{D}

ymij ∀j ∈ C, l ∈ F (15)

σl
ji ≤ (Q− Γ)xlji − Ξulji ∀i ∈ C†, j ∈ C†; i 6= j, l ∈ F (16)∑

b

αlb
ijalb = σl

ij ∀i ∈ C†, j ∈ C†l ∈ F (17)

φlij =
∑
b

αlb
ijglb ∀i ∈ C†, j ∈ C†, l ∈ F (18)

αlb
ij ≤ xlij ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B (19)

$lb
ij ≤ αlb

ij ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B/{3} (20)

αlb
ij ≤ $

l(b−1)
ij ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B/{0, 1} (21)
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for determining charge at departure:

ς lij ≤ Qxlij ∀j ∈ C, l ∈ F, i ∈ C† (22)

ς lij ≥ σl
ij ∀j ∈ C, l ∈ F, i ∈ C† (23)∑

b

γlbijalb = ς lij ∀i ∈ C†, j ∈ C†, l ∈ F (24)

πl
ij =

∑
b

γlbijglb ∀i ∈ C†, j ∈ C†, l ∈ F (25)

γlbij ≤ xlij ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B (26)

ρlbij ≤ γlbij ∀i ∈ C†, l ∈ F, b ∈ B/{3} (27)

γlbij ≤ ρ
l(b−1)
ij ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B/{0, 1} (28)

for determining charging time:

λlij = πl
ij − φlij ∀i ∈ C†, j ∈ C†, l ∈ F (29)

for tracking load on vehicle: ∑
j∈C†
i 6=j

∑
l∈F∪{D}

ulji −
∑
j∈C†
i 6=j

∑
l∈F∪{D}

ulij = ∆i ∀i ∈ C (30)

∑
i∈C†
i6=j

∑
l∈F∪{D}

uli0 = 0 (31)

on domain of variables:

xlij ∈ {0, 1}; ylij ≥ 0; tlij ≥ 0; ulij ≥ 0 ∀i ∈ C†, j ∈ C†, l ∈ F ∪ {D} (32)

λlij ≥ 0; σl
ij ≥ 0; ς lij ≥ 0; πl

ij ≥ 0; φlij ≥ 0 ∀i ∈ C†, j ∈ C†, l ∈ F (33)

$lb
ij ∈ {0, 1}; ρlbij ∈ {0, 1}; αlb

ij ∈ [0, 1]; γlbij ∈ [0, 1]; ∀i ∈ C†, j ∈ C†, l ∈ F, b ∈ B (34)

The objective function (4) seeks to minimize the total time (travel times plus charging times). Constraints
(5) ensure that each customer is visited exactly once. Constraints (6) ensure flow conservation at each
customer. Constraints (7) ensures the time of departure at a vertex is no earlier than the sum of arrival time
and the service time. Constraints (8) ensures the arrival time at the first vertex from the depot is greater
than the travel time plus charging time if any. In the constraints (7) and (8) the term τijx

D
ij will be non-zero

only if the vehicle travels directly between i and j. Similarly, the term
∑

m∈F ((τim + τmj)x
m
ij + λmij ) will be

non-zero only if the vehicle passes through a CS (m) while traveling between vertices i and j. Constraints
(7) and (8) also help in sub-tour elimination. Constraints (9) ensures the maximum tour duration is not
exceeded. Constraints (10) ensures that the maximum state of charge is not violated. Constraints (11) and
(12) ensure that the charge on arrival at the first customer should be the difference of either full charge and
charge required to travel from the depot to the first customer or departure charge from a CS and the charge
required to travel from the CS to the first customer. Similarly, the constraints (13) and (14) ensure the
arrival charge at a customer is always less than or equal to the difference of departure charge at previous
node (either a CS or a customer) and charge required to travel from the previous node to the customer.
Constraints (15) ensures the sum of arrival charge at a CS and the charge required to reach the CS from
the previous node is always less than or equal to the departure charge at the previous node. Constraints
(16) ensures the arrival charge at a CS is less than or equal to the difference of the maximum state of charge
and the charge required to reach the CS from the previous node. In constraints (11)-(16), load-dependent
discharging is included by splitting the charge required into two terms i) charge required by an empty vehicle
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(Γxlij) and ii) extra charge required for the load carried (Ξulij). Constraints (17) gives the fractional values

of αlb
ij based on the arrival charge, which is later used in constraints (18) to get the time required to charge

from zero to the arrival charge of EV at the CS. Constraints (19)-(21) ensure the value of α
l(b+1)
ij is non-zero

only if αlb
ij is one. Constraints (22) and (23) ensure the departure charge of an EV from CS l ∈ F can be at

most equal to the maximum state of charge and at least equal to the arrival charge at the CS, respectively.
Constraints (24) gives the fractional values of γlbij based on the departure charge at a CS that is later used
in constraints(25) to get the time required to charge from zero to the departure charge of EV at the CS.

Constraints (26)-(28) ensure the value of γ
l(b+1)
ij is non-zero only if γlbij is one. Constraints (29) define the

charging time spent at any CS. Constraints (30) ensures that the difference in the load carried by vehicle
from arrival to departure at a vertex is equal to its demand. Constraints (31) ensure that no load is carried
by a vehicle while returning to the depot. Finally, constraints (32) - (34) define the domain of the decision
variables. The E-VRP-NL-LD directly reduces to E-VRP-NL. Assigning ∆i = 0 ∀i ∈ C, Γ = constant
discharge rate, and Ξ = 0 results in the E-VRP-NL formulation that is used for comparing with models in
the literature.

4. Solution method

Ropke and Pisinger (2006a) introduced the Adaptive Large Neighborhood Search (ALNS) as an extension
of the Large Neighborhood Search (LNS) (Shaw, 1998). Unlike LNS, ALNS can adapt to the problem based
on its performance in previous iterations and is one of the most effective heuristics for large-scale VRPs.
Ropke and Pisinger (2006b) later proposed a unified ALNS approach for several variants of VRP. Since then,
it has been widely used for various variants of VRP. For example, the pollution-routing problem (Demir
et al., 2012), two-echelon VRP (Hemmelmayr et al., 2012; Kancharla and Ramadurai, 2019), VRP with
multiple routes (Azi et al., 2014), and electric VRP (Keskin and Çatay, 2016; Kancharla and Ramadurai,
2018; Zhang et al., 2020) all use ALNS variants to solve the problem.

The earlier ALNS implementation for E-VRP (Keskin and Çatay, 2016) cannot handle partial charging,
different charging technologies, and capacitated charging stations. When the CSs have the same charging
technology, the share of charge at each CS does not affect the overall time. However, if the CSs have different
technologies, the percentage of charge and the sequence of visits affect the total time. For example, if a
route includes visits to a fast and a slow CS, visiting the fast CS earlier in the sequence may allow for a
longer charge in less time and hence reduce the charging time at the slow CS. This reduction in charging
time could be advantageous as opposed to visiting later in the sequence. When the algorithm processes the
route from the starting depot, the minimum charge required to complete the route is unknown if there are
two or more CS visits en-route. Hence, we process our solutions from the end depot and build the route
back to the starting depot. In routes with two or more CS, we assume that vehicles always arrive at a CS
with zero charge. Charging a vehicle with a quantum of charge that is more than what is required to reach
the next CS will only worsen the objective value.

4.1. ALNS algorithm

We propose a modified ALNS algorithm for E-VRP-NL that can handle partial charging, different charg-
ing technologies, and capacity restrictions. We describe the steps of ALNS are demonstrated here. We
provide an initial solution to the ALNS. Subsequently, we either remove q customers from the solution and
re-insert them to create a new solution or remove r CSs from the solution and insert new CSs wherever
required. The insertion and removal operators are selected based on their past success using the roulette
wheel selection method. Since the weights of operators are updated based on their past performance, the
operators with higher weights have a higher probability of being chosen again.

Simulated annealing (SA) acceptance criteria for a new solution is implemented as follows: we always
accept when the total time of the new solution is lower than the current best solution; otherwise, we accept
it with a probability e−(f(Snew)−f(Sbest))/kT , where f(S) is the objective value of the solution S. T is the
temperature, and k is the Boltzmann constant. Temperature T is reduced by a temperature reduction factor
(η) at the end of Itemp iterations at the current temperature. The ALNS stops either when the number
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of non-improvement temperature decrements exceeds a specified number (150 in our study) or after having
run maximum allowed iterations. Algorithm 1 presents the pseudo-code of the proposed ALNS algorithm.

Algorithm 1 Adaptive Large Neighborhood Search

1: Read input data, initialize weights and scores
2: Generate an initial solution using greedy heuristic (S)
3: Make initial solution as the best solution S∗ ← S
4: p = 0
5: for i← 0, Imax do
6: for j ← 0, Itemp do
7: if j % Ns = 0 then
8: Use roulette wheel selection to select station removal and station insertion operators
9: Solution after applying station removal operator on S is Sip

10: New solution after applying the station insertion operator on Sip is Si

11: else
12: if j % Nrr = 0 then
13: Use roulette wheel selection to select customer removal operator
14: Solution after applying customer removal operator on S is Sip

15: else
16: Use roulette wheel selection to select route removal operator
17: Solution after applying route removal operator on S is Sip

18: end if
19: Use roulette wheel selection to select customer insertion operator
20: New solution after applying the customer insertion operator on Sip is Si

21: end if
22: if f(Si) ≤ f(S) then
23: S ← Si

24: Update scores of operators
25: else if R ≤ e−(f(Si)−f(S∗))/kT then
26: S ← Si

27: Update scores of operators
28: end if
29: end for
30: if f(S) < f(S∗) then
31: S∗ ← S
32: p = 0
33: else
34: p = p+1
35: end if
36: Update weights of operators based on scores
37: Update Temperature (T = ηT )
38: if p = Θ then
39: Stop
40: end if
41: end for

Note: S - incumbent solution; S∗ - best solution; p - counter for consecutive non improvement iterations;
Ns- Station operation interval; Nrr- Route removal interval; R - random number ∈ [0, 1]; η - temperature
reduction factor; Θ - maximum number of consecutive non improvement iterations
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4.1.1. Initial solution

We construct the initial solution by assigning each customer to a vehicle. The cases where the charge
in the vehicle is insufficient to make a return trip to the inserted customer, a CS is inserted using greedy
station insertion, as explained in subsection 4.1.6.

4.1.2. Customer removal operators

We use the three customer removal operators introduced by Ropke and Pisinger (2006b) - random re-
moval, worst distance removal, and related removal. All these operators remove q customers from their
existing routes and add them to a customer pool. The value of q is randomly selected in the range
[min(30, 0.1nc),min(60, 0.4nc)], where nc is the total number of customers in the network. The procedure
of removing q customers from their current routes varies from operator to operator, as explained below.

In random removal, we remove q customers randomly from their current position and add them to the
customer pool. In worst distance removal, we first calculate the removal gain, defined as the reduction in
distance traveled in a particular route with and without the customer, for each customer and then remove
the customer with the highest removal gain. We repeat this process until q customers are removed from
their existing positions and added to the customer pool. In related removal, we remove a random customer
along with q − 1 of its nearest customers.

4.1.3. Route removal operators

We use random route removal (Hemmelmayr et al., 2012) or greedy route removal (Keskin and Çatay,
2016) operator after every Nrr iterations based on roulette wheel selection. These operators remove p routes
from the solution and then adds all the customers from those routes to the customer pool. We randomly
choose the value of p in the range [0.1nr, 0.4nr], where nr is the total number of routes in the present
solution. In random route removal, we remove p random routes from the solution. Whereas in greedy route
removal, we first sort the routes in the increasing order of the number of customers visited and then remove
the first p routes from the solution.

4.1.4. Station removal operators

We use four different station removal operators: two newly proposed by us and two from Keskin and
Çatay (2016). All these operators remove r ( min(10, 0.4ncs)) CSs from their current route, where ncs is
the number of CS visits.

In the first operator from Keskin and Çatay (2016), we randomly remove r CSs from their existing
routes. In the second operator from Keskin and Çatay (2016), as well as the newly proposed third and
fourth operators we sort the CSs in decreasing order of the charge available on arrival, the charge required
to reach the CSs, and charging time spent at the CSs in those routes respectively. Subsequently, we remove
the first r CSs on the sorted list from the solution.

4.1.5. Customer insertion operators

We use three customer insertion operators, greedy insertion, greedy insertion perturbation, and regret
k-insertion introduced in Ropke and Pisinger (2006b). Unlike in Ropke and Pisinger (2006b), here these
operators need to be followed by a greedy station insertion (explained in section 4.1.6) when a customer
insertion makes a route infeasible due to insufficient charge in battery. These operators insert all the
customers from the customer pool into the solution.

In greedy insertion, we compute the insertion cost, defined as the increase in distance traveled with and
without a random customer picked from the customer pool, and then insert that customer at a position
with the lowest insertion cost. Greedy insertion perturbation works similar to greedy insertion, except that
we introduce some noise to the insertion cost by multiplying with a uniformly distributed random variable
δ ∈ [0.8, 1.2]. In regret k-insertion, we compute the regret costs, defined as the difference between the lowest
insertion cost and the kth (k = 2 in our case) lowest insertion cost, for all the customers in the customer
pool. We then insert the customer with the highest regret cost at a position that leads to the lowest increase
in objective value. We repeat the operator selected through roulette wheel selection until the customer pool
becomes empty.
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In case of routes with CS, customer insertion can happen at three different positions: i) between the
origin depot and a CS; ii) between a CS and the destination depot, and iii) between two CSs. In the first
case, the insertion will only affect the state of charge at the CS. In the second case, we will increase the
departure state of charge at the CS such that the vehicle can visit the customer and reach the depot with
zero charge. In the last case, we will increase the departure state of charge at the previous CS such that
the vehicle can visit the customer. Such a customer insertion in any given route (with or without CSs)
or starting a new route with a customer can lead to infeasibility in terms of the state of charge. In such
cases, we perform a greedy station insertion. If the problem becomes infeasible by exceeding maximum
route duration after the greedy station insertion, then we will insert the customer at the next best position
possible.

4.1.6. Station insertion operators

We have introduced three new operators named greedy insertion, best insertion, and compare-k insertion
that can tackle the capacity constraints at a charging station. One of these operators selected using roulette
wheel selection is used immediately after the station removal operators to make the infeasible routes feasible
with respect to the state of charge.

In greedy insertion operator, we identify the customer where the vehicle arrives with a negative charge
and then insert the nearest CS between that customer and the previous customer. If this insertion is
infeasible due to lack of charge or number of simultaneous charging operations, we insert a CS at a feasible
position in the earlier edges. In best station insertion, we insert the CS between the customer with negative
arrival charge and a previously visited CS or depot such that the increase in objective value is least, and
at the same time, the number of simultaneous charging operations is not violated. Compare-k insertion
works similar to best station insertion except that we check for only k insertion positions starting from the
customer with a negative charge to previous CS or depot instead of all insertion positions.

4.1.7. Adaptive weights

We use a roulette wheel selection to identify the insertion and removal operators. Initially, all the
operators have equal weights, and the score of all operators is zero. We update operators’ scores at the end
of every iteration based on their performance in the current iteration. These scores are used to update the
weights of the operators before performing the temperature reduction, and then scores are reset to zero.
Weights are updated as W i

o = W i−1
o + πi

o/ωi, where W i
o is the weight of operator o after ith temperature

reduction and πi
o is the score of the operator o during ith temperature reduction, ωi is the sum of scores

of all the operators in the respective category (customer insertion, customer removal, station insertion, and
station removal) during the ith temperature reduction.

5. Computational Tests

The MILP model is coded in GAMS 23.9 and solved using Gurobi 7.5 solver hosted on NEOS server
(Czyzyk et al., 1998; Dolan, 2001; Gropp and Moré, 1997). The server runs on Intel Xeon E5-2430 @ 2.2GHz
with 3 GB RAM (available for each job submitted). The ALNS algorithm is coded in Python and tested
on a PC running on 3.6 GHz Intel Core-i7-7700 processor with 16 GB of RAM. Instances are described in
subsection 5.1; MILP results in subsection 5.2 followed by parameter tuning in subsection 5.3 and ALNS
results 5.4.

5.1. Instance sets

Montoya et al. (2017) introduced 120 instances for the E-VRP-NL using real data from EV configuration
and battery charging times. These 120 instances are presented as six subsets: each having 20 instances
with 10, 20, 40, 80, 160, and 320 customers. Instances in each of these subsets vary by the number of CSs
available (low and high availability) and types of charging technologies (slow, moderate, and fast charger).
In all the instances, EV has a charge consumption rate of 0.125kWh/km, a battery capacity of 16kWh, and
a maximum route duration of 10h. We also have created 120 new instances for E-VRP-NL-LD that include
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customer freight demand by modifying the Montoya et al. (2017) instances. The demands (in kg) used are
generated by drawing a random value in the range [50, 250], and the capacity of the EV is assumed to be
600. The same instances created for E-VRP-NL-LD are used for E-VRP-NL-LD-CCS with additional data
on the number of simultaneous charging operations possible at each CS.

5.2. Gurobi results

Table 2 shows the results for ten, twenty, and forty customer instances for two E-VRP-NL models from
the literature and the present model. In this table, the first column represents the number of customers (|C|).
The second column indicates the model. The third column (#Unk) lists the number of instances where the
solver could not find a feasible solution within the time limit of three hours. The fourth column (#Opt) lists
the number of instances where the solver found a feasible but not optimal solution within the time limit.
The fifth column (#Opt) lists the number of instances where the solver found an optimal solution. Finally,
column six lists the average percentage improvement in the objective value over the Montoya et al. (2017)
model.

The results reported by Montoya et al. (2017) were the incumbent solutions obtained by running Gurobi
(version 5.6) for 100 hours. The longer run time is perhaps because they solve the problem repeatedly for
different values of β (the maximum number of visits to a CS). Froger et al. (2019) obtained their solutions
using Gurobi (version 7.5) at the end of three hours. Similarly, we obtained our using Gurobi (version
7.5) at the end of three hours. Montoya et al. (2017) found a feasible solution in 18 out of 20 cases for 20
customer instances and only 7 out of 20 cases for 40 customer instances whereas our model found a feasible
solution for all the 20 cases in 20 customer instances and 12 out of 20 cases in 40 customer instances.
Froger et al. (2019) had presented two arc-based formulations and one path based formulation. Among
the two arc-based formulations, the one that uses node repetition performed worse than Montoya et al.
(2017) mainly because it was run only for 3 hours, whereas Montoya et al. (2017) ran their model for 100
hours. The arc-based formulation performed relatively better, but still worse than Montoya et al. (2017).
Our arc-based formulation outperformed the formulation of Montoya et al. (2017) and the two arc-based
formulations of Froger et al. (2019). Compared to our results, the path-based formulation of Froger et al.
(2019) reported better bounds for 20 customer instances. Froger et al. (2019) did not report results for 40
customer instances. However, their formulation requires path enumeration as a pre-processing step, whereas
our formulation can be solved directly with any standard optimizer. Performing additional runs, we were
able to match the results in Froger et al. (2019) by extending our run time to 8 hours. Appendix A presents
the detailed results for each instance.

Table 2: Comparison of results of different models on 10, 20 and, 40 customer instances

|C| Model #Unk #Opt #Opt Improvement (%)

10 Montoya et al. (2017) 0 0 20 -
10 Froger et al. (2019) (Node-rep) 0 11 9 -0.39
10 Froger et al. (2019) (Arc-rep) 0 4 16 0.00
10 Froger et al. (2019) (Path) 0 0 20 0.00
10 Present model 0 0 20 0.00
20 Montoya et al. (2017) 2 12 6 -
20 Froger et al. (2019) (Node-rep) 5 15 0 -0.6
20 Froger et al. (2019) (Arc-rep) 5 10 5 0.94
20 Froger et al. (2019) (Path) 0 15 5 1.11
20 Present model 0 15 5 0.46
40 Montoya et al. (2017) 13 7 0 -
40 Present model 8 12 0 4.39

Note: Node-rep is the formulation with node repetitions, Arc-rep is the formulation with arc repetitions,
and Path is the path-based formulation

11



Table 3 shows the Gurobi results for the E-VRP-NL-LD instances obtained at the end of three-hour time
limit. In this table, the first column represents the number of customers (|C|). The second column lists
the number of instances where the solver could not find a feasible solution within the time limit. The third
column lists the number of instances where the solver found a feasible but not optimal solution within the
time limit, and the final column lists the number of instances where the solver found an optimal solution.
Appendix B presents the detailed results for each instance. As expected, the performance of Gurobi with
E-VRP-NL-LD is poorer compared to E-VRP-NL.

Table 3: Gurobi results for E-VRP-NL-LD instances

|C| #Unk #Opt #Opt

10 1 2 17
20 1 17 2
40 12 8 0

5.3. Parameter tuning

The performance of heuristic algorithms largely depends on the parameters used. Our ALNS algorithm
depends on the following parameters: maximum iterations (Imax), maximum iterations at a temperature
(Itemp), temperature reduction factor (η), initial temperature (Ti), route removal operation interval (Nrr),
station operations interval (Ns), score for the best update (σ1), score for better solution (σ2), and score
for best solution (σ3). We have tested the 20 customer instances with six values of Itemp (100, 200, 500,
800, 1000, 1200), five values of Ti (10, 20, 30, 50, 100), and four values of η (0.9, 0.95, 0.98, 0.99) for a
total of 120 combinations. These combinations are ranked based on average solution obtained for the tested
instances, and the combinations with the same average solution were ranked based on run times. The final
combination that gave the best results is retained, and those were Itemp = 800; η =0.98; Ti = 30. The
remaining parameters are taken from literature and are as follows: Nrr = 50; Ns = 11; σ1 = 45; σ2 = 10,
σ3 = 30, and Θ = 150. We have fixed the value of Imax as 500000 (625 iterations in the outer loop each
with Itemp iterations) similar to Hemmelmayr et al. (2012) and Li et al. (2015). However, in most cases
algorithm will stop earlier than these iterations because of exceeding the limit for the number of consecutive
non-improvement temperature decrements.

5.4. ALNS results for E-VRP-NL

We evaluate the performance of ALNS on all the 120 E-VRP-NL instances introduced by Montoya
et al. (2017). ALNS is run ten times for each of these instances, and we compare the results are compared
with the Best Known Solution (BKS) from literature (Montoya et al., 2017; Froger et al., 2019). In table
4, “ALNS-Best” represents the best objective value obtained by ALNS during the ten runs and “ALNS-
Average” represents the average of the objective values obtained during the ten runs. ALNS matched BKS
in 38 instances, and of the remaining 81 instances, ALNS clearly outperformed the existing algorithms by
improving the objective function value in 75 instances. Appendix C presents the detailed results of ALNS
for each instance.

We have run ALNS with and without the new operators and evaluated the performance by analyzing
the variation in the gap compared to BKS for the following: i) best solutions without new operators, ii)
average solutions without new operators, iii) best solution with new operators, and iv) average solution
with new operators. The run times for both cases are similar. ALNS with new operators always resulted
in better solutions in more than 80% of the instances compared to cases without new operators. Average
improvement in solutions is 0.13%, 0.95%, 1.13% and 0.69% for 40, 80, 160, and 320 customer instances
respectively. For instances with customers of 10 and 20, there was no difference in with and without new
operators. Figure 2 compares the gaps in all the cases mentioned above. The best solutions for ALNS with
new operators is always better than ALNS without new operators.
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Table 4: Performance of ALNS

Customers BKS ALNS-Average ALNS-Best Improved Matched BKS Optimal

10 14.25 14.25 14.25 0 20 20
20 19.44 19.46 19.4 9 10 6
40 31.48 31.5 31.3 13 4 0
80 38.01 37.42 37.10 19 1 0
160 70.24 69.00 68.16 20 0 0
320 132.47 133.90 131.62 14 3 0

Total 75 38 26

Performance of ALNS in 320 customer instances is less remarkable than instances with 160 customers.
This could be because of the restriction on the removal operators to remove max(60,0.4nc) vertices (includes
both customer and CSs) from the solution. To test the effect of this restriction on the solution quality, we
increased this limit to 100 vertices in 320 customer instances. The relaxation led to an average improvement
of only 0.2% over the 60 vertex limit but resulted in an increase in run time by 43%. This is a trade-off
between run time and solution quality, and we report the result with 60 vertices limit since the improvements
with 100 vertices are not significant.

10 customers 20 customers 40 customers 80 customers 160 customers 320 customers

−8

−4

0

4

G
ap

(%
)

Average of 10 without new operators

Average of 10 with new operators

Best of 10 without new operators

Best of 10 with new operators

Figure 2: Variation in the gap for best solutions without new operators, best and average solutions with new operators compared
to BKS.

5.5. ALNS results for E-VRP-NL-LD

We solve the newly introduced instances with and without considering the effect of load in energy
estimation (refer to Table 5). The increase in the number of vehicles used and total time is insignificant
for instances having up to 20 customers. However, beyond 20 customers, there is a considerable increase.
Using a load-dependent discharge in the energy estimation results in higher discharge that leads to longer
charging times. The increase in charging time results in an increase in the number of vehicles to avoid the
violation of tour duration constraint. This increment leads to a rise in empty trips, thereby increasing the
travel time and total time. See Appendix D for the detailed results of ALNS for each instance.
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Table 5: Effect of considering the load on optimal routes

Instance size
With load Without load % dev in cost % dev in vehicles

Avg. Cost (i) Avg. Vehicles (ii) Avg. Cost (iii) Avg. Vehicles (iv)
(i− iii)

i
∗ 100

(ii− iv)

ii
∗ 100

10 20.69 4.25 19.62 4.20 5.45 1.19
20 29.35 7.05 28.90 7.00 1.56 0.71
40 39.48 7.80 31.43 6.25 25.61 24.80
80 46.55 10.35 37.20 8.50 25.13 21.76
160 106.71 21.05 68.21 15.90 56.44 32.39
320 218.50 40.65 131.77 30.55 65.82 33.06

To evaluate the effect of ignoring load, we compare the number of CSs used, the maximum number of
CSs per route, charging times, and travel time for both the cases - with and without considering load. First,
we compare the average number of CS visits in figure 3, and it is clear that the number of visits increased
significantly with instance size in cases considering load compared to without load. Even the maximum
number of CS visits per route is higher in the cases considering load over cases without considering load
(refer figure 4).
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Figure 3: Average number of CS visits
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Figure 4: Maximum number of CS visits per route

We compare the charging times and travel times for both cases - with and without considering load
(refer figures 5 and 6). The average increase in charging time for cases with load is around 15-20% for up
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to 20 customer instances, whereas it is in the range of 50-80% for instances with 40 or more customers. We
observe a similar trend in the case of travel time; however, the magnitude is lower. The average increase is
around 2% for instances up to 20 customers and 14-30% for 40 or more customers.
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Figure 5: Comparison of variation in charging times
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Figure 6: Comparison of variation in travel times

5.6. ALNS results for E-VRP-NL-LD-CCS

We solve the newly introduced E-VRP-NL-LD instances along with a restriction on the number of
simultaneous charging operations at a CS. All the solutions without such a restriction had no more than five
simultaneous visits to a CS. Most of the instances with customers equal to or more than 160 were infeasible
when we restrict simultaneous visits to CS to less than four. Hence, we are using cases with less than 160
customers to evaluate the effect of this restriction.

Sensitivity analysis was performed on the number of simultaneous charging operations (see table 6) by
restricting the number of simultaneous visits to two, three, and four. However, there is no change in results
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when we set the limit to four. In table 6, the first column has the instance names. Columns two, three, and
four has the results with the number of simultaneous visits restricted to two, three, unlimited (Un) or four,
respectively. Columns five, six, and seven has percentage deviation in objective value for 2 vs 3 visits, 2 vs
unlimited visits, 3 vs unlimited visits, respectively. The rows with gray color indicate those instances where
the solutions in the unlimited case had at least one charging station with no more than three simultaneous
visits, whereas the remaining rows had no more than two visits. A few of the instances had resulted in
the same objective value even after the restriction, which shows that there are multiple solutions possible.
We do not compare the number of vehicles used and the run time of the algorithm since they were not
significantly different for cases with and without restriction. The objective function value was 2% higher
on an average when the number of simultaneous charging operations was restricted to two compared to the
unlimited case. The difference was only 0.5% when three simultaneous charging operations were allowed.

Table 6: Sensitivity analysis on number of simultaneous charging operations

Simultaneous Charging operations
Instance

2 (i) 3 (ii) Unlimited (iii)

% dev 2 vs 3
(i− ii) ∗ 100

i

% dev 2 vs Un
(i− iii) ∗ 100

i

% dev 3 vs Un
(ii− iii) ∗ 100

ii
tc1c10s2cf3 25.28 25.28 25.28 0.00 0.00 0.00
tc1c10s2ct3 22.93 22.06 22.06 3.80 3.80 0.00
tc0c20s3cf2 39.37 39.15 39.15 0.57 0.57 0.00
tc0c20s4cf2 40.72 39.08 39.08 4.03 4.03 0.00
tc1c20s3cf1 24.62 24.62 24.62 0.00 0.00 0.00
tc1c20s3ct1 30.63 29.17 28.87 4.77 5.76 1.04
tc1c20s4ct1 26.02 25.61 25.61 1.59 1.59 0.00
tc1c20s4ct3 25.72 25.58 25.58 0.57 0.57 0.00
tc2c20s3cf0 38.00 38.00 37.60 0.00 1.06 1.06
tc2c20s3ct0 40.35 40.30 40.30 0.13 0.13 0.00
tc2c20s4cf0 37.93 37.48 37.48 1.18 1.18 0.00
tc2c20s4ct0 42.76 42.69 41.39 0.15 3.20 3.05
tc0c40s5cf0 40.09 39.36 39.36 1.81 1.81 0.00
tc1c40s5ct1 64.89 62.66 62.66 3.43 3.43 0.00
tc2c40s5cf3 29.33 29.12 29.12 0.69 0.69 0.00
tc2c80s12cf4 57.74 56.75 55.23 1.71 4.35 2.68
tc2c80s8cf4 69.59 67.60 67.60 2.86 2.86 0.00
tc2c80s8ct4 62.85 61.72 61.72 1.80 1.80 0.00
tc2c80s12cf4 Infeasible 53.37 52.30 - - 2.00

1.616 2.046 0.517

6. Conclusion

In this paper, we have introduced a new MILP model for Electric Vehicle Routing Problem with Non-
Linear charging and Load-Dependent discharging (E-VRP-NL-LD) and an Adaptive Large Neighborhood
Search (ALNS) algorithm for solving the E-VRP-NL-LD. We then extend the ALNS to solve E-VRP-NL-
LD-CCS where we impose capacity constraints on simultaneous charging of EVs at a Charging Station
(CS). The restricted form of the new MILP model allows multiple visits to the CS and outperforms the
model of Montoya et al. (2017). The proposed ALNS algorithm has five new operators, and it can handle
multiple charging technologies and load-dependent discharge. We have tested the algorithm on 120 E-VRP-
NL instances introduced by Montoya et al. (2017), and the results demonstrate that in most cases the ALNS
outperforms the Iterated Local Search and a Heuristic Concentration (ILS+HC) (Montoya et al., 2017) and
the labeling method used in Froger et al. (2019). The proposed new operators improved solutions by 0.71%
on an average over the cases without the new operators. Overall, out of 120 instances tested, ALNS had
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improved on the Best Known Solutions (BKS) in 75 instances (62.5% of instances) and matched BKS in 38
instances (31.6% instances), out of which 26 were optimal solutions.

We have also tested the MILP model on E-VRP-NL-LD instances that considers load to be delivered at
each customer and a load-dependent discharge function. Gurobi found 19 optimal and 27 feasible solutions
out of the 60 instances tested. We tested ALNS on 120 instances with and without considering load. When we
compared the results of with and without load formulations, the cases without load always underestimated
the number of charging station visits and vehicles required, which in turn resulted in an underestimate
of charging time by 15-80% and travel time by 2-30%. These underestimates were significantly higher
in instances with 40 or more customers. We also test ALNS on 80 instances of E-VRP-NL-LD with a
restriction on simultaneous charging operations (E-VRP-NL-LD-CCS) that resulted in an increase in the
objective value by up to 5.76% compared to E-VRP-NL-LD. Interestingly the run time for ALNS for solving
E-VRP-NL-LD-CCS was comparable to solving E-VRP-NL-LD.

In this paper, we have assumed that: i) there are no delivery time window restrictions, except a maximum
tour duration limit, ii) vehicles are from a homogeneous fleet, and iii) vehicles operate out of a single depot.
However, these may not hold in the real world, and these assumptions will affect routing decisions. Future
work will aim to relax the above assumptions.
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Appendix A. Gurobi Results for E-VRP-NL

Table A.7: Detailed computational results on the 10-customer instances

Instance Bound LP Gap (%) Time (s) Instance Bound LP Gap (%) Time (s)

tc0c10s2cf1 19.75 0.00 15 tc1c10s3cf2 9.03 0.00 35
tc0c10s2ct1 12.30 0.00 15 tc1c10s3cf3 16.37 0.00 181
tc0c10s3cf1 19.75 0.00 21 tc1c10s3cf4 14.90 0.00 15
tc0c10s3ct1 10.80 0.00 11 tc1c10s3ct2 9.20 0.00 330
tc1c10s2cf2 9.03 0.00 25 tc1c10s3ct3 13.02 0.00 71
tc1c10s2cf3 16.37 0.00 40 tc1c10s3ct4 13.21 0.00 30
tc1c10s2cf4 16.10 0.00 10 tc2c10s2cf0 21.77 0.00 81
tc1c10s2ct2 10.75 0.00 100 tc2c10s2ct0 12.44 0.00 40
tc1c10s2ct3 13.17 0.00 290 tc2c10s3cf0 21.77 0.00 90
tc1c10s2ct4 13.83 0.00 26 tc2c10s3ct0 11.51 0.00 175

Table A.8: Detailed computational results on the 20-customer instances

Instance Bound LP Gap (%) Time (s) Instance Bound LP Gap (%) Time (s)

tc0c20s3cf2 27.46 47.19 10800 tc1c20s4cf1 16.38 24.86 10800
tc0c20s3ct2 17.44 21.32 10800 tc1c20s4cf3 16.79 28.97 10800
tc0c20s4cf2 27.79 50.59 10800 tc1c20s4cf4 16.99 0.00 1940
tc0c20s4ct2 17.05 21.77 10800 tc1c20s4ct1 18.02 29.27 10800
tc1c20s3cf1 17.48 11.88 10800 tc1c20s4ct3 14.43 0.00 1217
tc1c20s3cf3 16.80 26.91 10800 tc1c20s4ct4 16.99 15.53 10800
tc1c20s3cf4 16.99 0.00 6167 tc2c20s3cf0 24.67 38.94 10800
tc1c20s3ct1 19.38 30.48 10800 tc2c20s3ct0 25.78 44.03 10800
tc1c20s3ct3 12.60 0.00 5006 tc2c20s4cf0 24.67 40.16 10800
tc1c20s3ct4 16.21 0.00 1529 tc2c20s4ct0 26.02 46.84 10800

Table A.9: Detailed computational results on the 40-customer instances

Instance Bound LP Gap (%) Time (s) Instance Bound LP Gap (%) Time (s)

tc0c40s5cf0 34.73 39.96 10800 tc1c40s8cf1 - - 10800
tc0c40s5cf4 34.80 42.94 10800 tc1c40s8ct1 - - 10800
tc0c40s5ct0 30.50 35.19 10800 tc2c40s5cf2 - - 10800
tc0c40s5ct4 34.30 42.16 10800 tc2c40s5cf3 20.15 31.01 10800
tc0c40s8cf0 32.77 36.82 10800 tc2c40s5ct2 - - 10800
tc0c40s8cf4 - - 10800 tc2c40s5ct3 - - 10800
tc0c40s8ct0 26.55 26.36 10800 tc2c40s8cf2 27.70 35.27 10800
tc0c40s8ct4 39.54 50.62 10800 tc2c40s8cf3 20.41 38.10 10800
tc1c40s5cf1 - - 10800 tc2c40s8ct2 26.38 32.72 10800
tc1c40s5ct1 - - 10800 tc2c40s8ct3 25.20 52.65 10800
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Appendix B. Gurobi Results for E-VRP-NL-LD

Instance
Bound

Gap Instance
Bound

Gap
Lower Upper Lower Upper

tc0c10s2cf1 19.09 19.09 0.00 tc1c20s3cf3 23.03 25.47 09.55

tc0c10s2ct1 16.90 16.90 0.00 tc1c20s3cf4 21.46 21.46 0.00

tc0c10s3cf1 19.09 19.09 0.00 tc1c20s3ct1 20.33 32.70 37.83

tc0c10s3ct1 16.17 16.17 0.00 tc1c20s3ct3 23.36 25.48 08.35

tc1c10s2cf2 16.89 16.89 0.00 tc1c20s3ct4 20.95 21.65 03.23

tc1c10s2cf3 25.28 25.28 0.00 tc1c20s4cf1 20.49 26.67 23.16

tc1c10s2cf4 23.49 23.49 0.00 tc1c20s4cf3 23.30 25.47 08.50

tc1c10s2ct2 16.75 16.75 0.00 tc1c20s4cf4 21.46 21.46 0.00

tc1c10s2ct3 22.06 22.06 0.00 tc1c20s4ct1 20.34 28.50 28.64

tc1c10s2ct4 20.89 20.89 0.00 tc1c20s4ct3 22.90 25.50 10.19

tc1c10s3cf2 16.89 16.89 0.00 tc1c20s4ct4 21.06 21.46 01.88

tc1c10s3cf3 25.28 25.28 0.00 tc2c20s3cf0 32.27 36.62 11.88

tc1c10s3cf4 22.49 22.49 0.00 tc2c20s3ct0 31.95 40.45 21.01

tc1c10s3ct2 16.75 16.75 0.00 tc2c20s4cf0 31.82 36.77 13.45

tc1c10s3ct3 20.79 20.79 0.00 tc2c20s4ct0 31.88 40.56 21.40

tc1c10s3ct4 20.30 20.30 0.00 tc0c40s5cf4 21.06 53.38 60.54

tc2c10s2cf0 25.02 27.66 9.54 tc0c40s8ct0 19.66 33.34 41.04

tc2c10s2ct0 18.14 18.14 0.00 tc2c40s5cf3 17.19 30.81 44.23

tc2c10s3cf0 21.29 27.66 23.01 tc2c40s5ct2 17.78 32.92 45.97

tc0c20s3cf2 27.37 42.42 35.47 tc2c40s5ct3 15.16 41.78 63.70

tc0c20s3ct2 25.85 32.13 19.56 tc2c40s8cf3 15.84 31.43 49.61

tc0c20s4ct2 26.47 31.49 15.94 tc2c40s8ct2 17.47 33.44 47.75

tc1c20s3cf1 23.12 24.65 06.21 tc2c40s8ct3 14.35 36.47 60.66

Average 21.55 27.11 15.70

Appendix C. ALNS Results for Montoya et al. (2017) instances

Instances BKS (i)
ALNS

Best (ii)
Gap (%)

(ii− i) ∗ 100

(ii)

Average (iii)
Gap (%)

(iii− i) ∗ 100

(iii)

tc0c10s2cf1 19.75 19.75 0.00 19.75 0.00

tc0c10s2ct1 12.30 12.30 0.00 12.30 0.00

tc0c10s3cf1 19.75 19.75 0.00 19.75 0.00

tc0c10s3ct1 10.80 10.80 0.00 10.80 0.00

tc1c10s2cf2 9.03 9.03 0.00 9.03 0.00

tc1c10s2cf3 16.37 16.37 0.00 16.37 0.00

tc1c10s2cf4 16.10 16.10 0.00 16.10 0.00

tc1c10s2ct2 10.75 10.75 0.00 10.75 0.00
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Instances BKS (i)
ALNS

Best (ii)
Gap (%)

(ii− i) ∗ 100

(ii)

Average (iii)
Gap (%)

(iii− i) ∗ 100

(iii)

tc1c10s2ct3 13.17 13.17 0.00 13.17 0.00

tc1c10s2ct4 13.83 13.83 0.00 13.83 0.00

tc1c10s3cf2 9.03 9.03 0.00 9.03 0.00

tc1c10s3cf3 16.37 16.37 0.00 16.37 0.00

tc1c10s3cf4 14.90 14.90 0.00 14.90 0.00

tc1c10s3ct2 9.20 9.20 0.00 9.20 0.00

tc1c10s3ct3 13.02 13.02 0.00 13.02 0.00

tc1c10s3ct4 13.21 13.21 0.00 13.21 0.00

tc2c10s2cf0 21.77 21.77 0.00 21.77 0.00

tc2c10s2ct0 12.45 12.45 0.00 12.45 0.00

tc2c10s3cf0 21.77 21.77 0.00 21.77 0.00

tc2c10s3ct0 11.51 11.51 0.00 11.51 0.00

tc0c20s3cf2 27.6 27.47 -0.47 27.49 -0.40

tc0c20s3ct2 17.08 17.08 0.00 17.08 0.00

tc0c20s4cf2 27.48 27.47 -0.04 27.48 0.00

tc0c20s4ct2 16.99 16.99 0.00 16.99 0.00

tc1c20s3cf1 17.5 17.49 -0.06 17.49 -0.06

tc1c20s3cf3 16.63 16.44 -1.16 16.46 -1.01

tc1c20s3cf4 17.00 17.00 0.00 17.00 0.00

tc1c20s3ct1 18.95 18.94 -0.05 18.94 -0.05

tc1c20s3ct3 12.65 12.60 -0.40 12.60 -0.39

tc1c20s3ct4 16.21 16.21 0.00 16.21 0.00

tc1c20s4cf1 16.39 16.38 -0.06 16.56 1.00

tc1c20s4cf3 16.56 16.44 -0.73 16.48 -0.49

tc1c20s4cf4 17.00 17.00 0.00 17.00 0.00

tc1c20s4ct1 18.25 17.80 -2.53 18.17 -0.47

tc1c20s4ct3 14.43 14.43 0.00 14.43 0.00

tc1c20s4ct4 17.00 17.00 0.00 17.00 0.00

tc2c20s3cf0 24.68 24.68 0.00 24.92 0.95

tc2c20s3ct0 25.79 25.79 0.00 25.89 0.38

tc2c20s4cf0 24.67 24.67 0.00 24.67 0.00

tc2c20s4ct0 26.02 26.11 0.34 26.31 1.12

tc0c40s5cf0 32.67 32.20 -1.46 32.49 -0.54

tc0c40s5cf4 30.77 30.25 -1.72 30.27 -1.66

tc0c40s5ct0 28.72 28.38 -1.20 28.46 -0.91

tc0c40s5ct4 28.63 28.63 0.00 28.66 0.12

tc0c40s8cf0 31.042 31.00 -0.13 31.04 0.00

tc0c40s8cf4 29.32 28.16 -4.12 28.36 -3.37

tc0c40s8ct0 26.35 26.38 0.11 26.57 0.83

tc0c40s8ct4 29.20 29.08 -0.41 29.11 -0.32

tc1c40s5cf1 65.16 64.85 -0.48 65.03 -0.20
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Instances BKS (i)
ALNS

Best (ii)
Gap (%)

(ii− i) ∗ 100

(ii)

Average (iii)
Gap (%)

(iii− i) ∗ 100

(iii)

tc1c40s5ct1 52.68 52.33 -0.67 52.35 -0.63

tc1c40s8cf1 40.75 40.75 0.00 40.93 0.44

tc1c40s8ct1 40.56 40.49 -0.17 41.39 2.00

tc2c40s5cf2 27.542 27.54 0.00 27.54 0.00

tc2c40s5cf3 19.74 19.65 -0.46 19.65 -0.46

tc2c40s5ct2 26.91 27.15 0.88 27.15 0.88

tc2c40s5ct3 23.54 23.54 0.00 24.92 5.53

tc2c40s8cf2 27.142 27.15 0.04 27.26 0.46

tc2c40s8cf3 19.66 19.65 -0.05 19.75 0.45

tc2c40s8ct2 26.33 26.28 -0.19 26.53 0.76

tc2c40s8ct3 22.71 22.45 -1.16 22.45 -1.16

tc0c80s12cf0 34.64 34.38 -0.76 34.96 0.92

tc0c80s12cf1 42.90 41.75 -2.75 42.22 -1.61

tc0c80s12ct0 39.31 37.66 -4.38 38.45 -2.24

tc0c80s12ct1 41.94 40.30 -4.07 40.51 -3.53

tc0c80s8cf0 39.43 39.08 -0.90 39.11 -0.82

tc0c80s8cf1 45.222 44.50 -1.62 44.75 -1.05

tc0c80s8ct0 41.90 40.58 -3.25 41.31 -1.43

tc0c80s8ct1 45.27 44.87 -0.89 45.00 -0.60

tc1c80s12cf2 29.532 28.58 -3.32 28.64 -3.11

tc1c80s12ct2 29.52 28.47 -3.69 28.80 -2.5

tc1c80s8cf2 30.81 28.98 -6.31 29.04 -6.10

tc1c80s8ct2 31.74 29.88 -6.22 30.36 -4.55

tc2c80s12cf3 31.97 30.61 -4.44 30.62 -4.41

tc2c80s12cf4 43.89 43.31 -1.34 43.61 -0.64

tc2c80s12ct3 30.83 30.08 -2.49 30.11 -2.39

tc2c80s12ct4 42.40 42.34 -0.14 42.52 0.28

tc2c80s8cf3 32.44 31.82 -1.95 31.97 -1.47

tc2c80s8cf4 49.172 48.29 -1.82 49.17 0.00

tc2c80s8ct3 32.312 31.76 -1.73 31.84 -1.48

tc2c80s8ct4 44.83 44.83 0.00 45.32 1.08

tc0c160s16cf2 61.20 59.11 -3.54 59.31 -3.18

tc0c160s16cf4 82.862 79.48 -4.25 80.92 -2.40

tc0c160s16ct2 59.90 58.14 -3.03 58.49 -2.42

tc0c160s16ct4 82.322 79.83 -3.12 80.91 -1.74

tc0c160s24cf2 59.27 58.27 -1.72 58.76 -0.86

tc0c160s24cf4 81.382 80.31 -1.33 81.79 0.51

tc0c160s24ct2 59.25 57.03 -3.89 57.62 -2.82

tc0c160s24ct4 80.802 79.08 -2.18 79.66 -1.43

tc1c160s16cf0 79.80 79.20 -0.76 80.33 0.66

tc1c160s16cf3 71.512 70.33 -1.68 70.54 -1.38
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Instances BKS (i)
ALNS

Best (ii)
Gap (%)

(ii− i) ∗ 100

(ii)

Average (iii)
Gap (%)

(iii− i) ∗ 100

(iii)

tc1c160s16ct0 79.04 77.39 -2.13 78.43 -0.78

tc1c160s16ct3 73.29 68.23 -7.42 69.64 -5.25

tc1c160s24cf0 78.60 78.54 -0.08 79.88 1.60

tc1c160s24cf3 68.512 66.29 -3.35 67.20 -1.94

tc1c160s24ct0 78.21 75.85 -3.11 76.91 -1.68

tc1c160s24ct3 68.72 65.82 -4.41 67.08 -2.44

tc2c160s16cf1 60.34 58.54 -3.07 58.65 -2.88

tc2c160s16ct1 60.27 58.37 -3.26 58.47 -3.08

tc2c160s24cf1 59.82 57.91 -3.30 59.04 -1.32

tc2c160s24ct1 59.13 55.56 -6.43 56.35 -4.93

tc1c320s24cf2 152.062 149.64 -1.62 154.48 1.56

tc1c320s24cf3 117.462 117.37 -0.08 117.50 0.04

tc1c320s24ct2 148.77 152.60 2.51 155.35 4.24

tc1c320s24ct3 116.64 115.34 -1.13 116.48 -0.14

tc1c320s38cf2 141.622 141.62 0.00 147.74 4.14

tc1c320s38cf3 116.22 115.90 -0.28 116.24 0.02

tc1c320s38ct2 140.96 140.96 0.00 150.26 6.19

tc1c320s38ct3 116.062 115.55 -0.44 116.34 0.24

tc2c320s24cf0 182.452 189.14 3.54 192.41 5.18

tc2c320s24cf1 95.51 90.01 -6.11 90.42 -5.63

tc2c320s24cf4 122.74 122.06 -0.56 124.12 1.11

tc2c320s24ct0 181.45 187.30 3.12 189.51 4.25

tc2c320s24ct1 94.73 90.55 -4.62 91.22 -3.85

tc2c320s24ct4 121.822 120.29 -1.27 121.43 -0.32

tc2c320s38cf0 176.92 176.92 0.00 184.35 4.03

tc2c320s38cf1 94.29 90.33 -4.39 90.43 -4.27

tc2c320s38cf4 122.322 119.75 -2.15 119.77 -2.13

tc2c320s38ct0 190.962 187.36 -1.92 188.42 -1.35

tc2c320s38ct1 94.532 89.95 -5.09 90.68 -4.25

tc2c320s38ct4 121.662 119.74 -1.60 120.82 -0.69

Average 50.97 50.30 -1.24 50.92 -0.52

2 - BKS from Froger et al. (2019)
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Appendix D. ALNS Results for cases with and without considering load

File name
With load Without load

Total cost No.of Vehicles Total cost No.of Vehicles

tc0c10s2cf1 19.09 5 21.41 4

tc0c10s2ct1 16.90 4 16.09 4

tc0c10s3cf1 19.09 5 21.41 4

tc0c10s3ct1 16.17 4 15.90 4

tc1c10s2cf2 16.89 4 16.56 4

tc1c10s2cf3 25.28 4 20.57 4

tc1c10s2cf4 23.49 5 20.79 5

tc1c10s2ct2 16.75 4 16.62 4

tc1c10s2ct3 22.06 4 20.62 4

tc1c10s2ct4 20.89 4 20.24 4

tc1c10s3cf2 16.89 4 16.56 4

tc1c10s3cf3 25.28 4 20.57 4

tc1c10s3cf4 22.49 4 20.30 5

tc1c10s3ct2 16.75 4 16.77 4

tc1c10s3ct3 20.79 4 19.67 4

tc1c10s3ct4 20.30 4 19.97 4

tc2c10s2cf0 27.66 5 26.79 5

tc2c10s2ct0 18.14 4 17.75 4

tc2c10s3cf0 27.66 5 26.79 5

tc2c10s3ct0 17.52 4 17.06 4

tc0c20s3cf2 39.15 7 36.45 7

tc0c20s3ct2 30.46 7 29.45 7

tc0c20s4cf2 39.08 8 36.45 7

tc0c20s4ct2 29.77 7 29.45 7

tc1c20s3cf1 24.62 7 23.99 7

tc1c20s3cf3 25.62 7 25.06 7

tc1c20s3cf4 21.46 7 21.64 7

tc1c20s3ct1 28.87 7 24.36 7

tc1c20s3ct3 25.24 7 24.66 7

tc1c20s3ct4 21.65 7 21.39 7

tc1c20s4cf1 24.60 7 23.80 7

tc1c20s4cf3 25.60 7 25.06 7

tc1c20s4cf4 21.46 7 21.64 7

tc1c20s4ct1 25.61 7 24.16 7

tc1c20s4ct3 25.58 7 25.16 7

tc1c20s4ct4 21.46 7 21.64 7

tc2c20s3cf0 37.60 7 35.85 7

tc2c20s3ct0 40.30 7 39.10 7

tc2c20s4cf0 37.48 7 35.51 7

tc2c20s4ct0 41.39 7 39.01 7
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File name
With load Without load

Total cost No.of Vehicles Total cost No.of Vehicles

tc0c40s5cf0 39.36 9 32.2 7

tc0c40s5cf4 38.10 7 30.25 6

tc0c40s5ct0 35.17 8 28.38 7

tc0c40s5ct4 36.16 7 28.63 6

tc0c40s8cf0 37.55 8 31 6

tc0c40s8cf4 34.14 7 28.16 5

tc0c40s8ct0 31.96 7 26.38 6

tc0c40s8ct4 34.32 6 29.08 5

tc1c40s5cf1 80.74 12 64.85 10

tc1c40s5ct1 62.66 10 52.33 8

tc1c40s8cf1 47.37 8 40.75 7

tc1c40s8ct1 46.24 8 40.49 7

tc2c40s5cf2 35.54 7 27.54 6

tc2c40s5cf3 29.12 7 20.98 5

tc2c40s5ct2 32.18 7 27.15 6

tc2c40s5ct3 38.61 9 23.54 6

tc2c40s8cf2 34.98 7 27.15 6

tc2c40s8cf3 30.05 7 21.07 5

tc2c40s8ct2 32.19 7 26.28 6

tc2c40s8ct3 33.24 8 22.47 5

tc0c80s12cf0 40.57 9 34.48 8

tc0c80s12cf1 51.16 11 41.75 9

tc0c80s12ct0 43.41 10 38.47 9

tc0c80s12ct1 48.25 10 40.3 9

tc0c80s8cf0 46.23 11 39.08 9

tc0c80s8cf1 55.29 11 44.5 10

tc0c80s8ct0 48.00 11 40.58 9

tc0c80s8ct1 56.63 12 44.87 9

tc1c80s12cf2 35.24 9 28.58 7

tc1c80s12ct2 34.26 8 28.47 7

tc1c80s8cf2 35.72 9 28.98 7

tc1c80s8ct2 36.85 9 29.88 8

tc2c80s12cf3 41.98 10 30.61 8

tc2c80s12cf4 55.23 11 43.31 9

tc2c80s12ct3 37.63 9 30.08 8

tc2c80s12ct4 53.37 11 42.34 9

tc2c80s8cf3 41.54 11 31.82 8

tc2c80s8cf4 67.60 13 49.29 10

tc2c80s8ct3 40.32 10 31.76 8

tc2c80s8ct4 61.72 12 44.83 9

tc0c160s16cf2 103.72 22 59.11 15

tc0c160s16cf4 159.78 26 79.74 17
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File name
With load Without load

Total cost No.of Vehicles Total cost No.of Vehicles

tc0c160s16ct2 72.67 18 58.14 15

tc0c160s16ct4 104.52 21 79.83 17

tc0c160s24cf2 100.69 21 58.6 15

tc0c160s24cf4 155.14 26 80.4 17

tc0c160s24ct2 72.89 17 57.03 15

tc0c160s24ct4 103.40 20 79.08 17

tc1c160s16cf0 142.64 25 79.2 17

tc1c160s16cf3 135.98 25 70.33 16

tc1c160s16ct0 95.02 19 77.39 17

tc1c160s16ct3 92.01 19 68.23 16

tc1c160s24cf0 141.29 25 78.54 17

tc1c160s24cf3 126.16 24 66.4 16

tc1c160s24ct0 93.30 19 75.85 16

tc1c160s24ct3 85.23 19 65.82 16

tc2c160s16cf1 101.20 21 58.54 15

tc2c160s16ct1 100.24 20 58.45 15

tc2c160s24cf1 74.26 17 57.91 15

tc2c160s24ct1 74.06 17 55.56 14

tc1c320s24cf2 313.09 50 149.64 33

tc1c320s24cf3 220.07 42 117.37 29

tc1c320s24ct2 229.08 41 152.6 33

tc1c320s24ct3 164.68 36 115.34 29

tc1c320s38cf2 297.15 49 141.63 32

tc1c320s38cf3 209.14 40 115.9 28

tc1c320s38ct2 221.65 40 140.96 32

tc1c320s38ct3 155.72 34 115.71 29

tc2c320s24cf0 329.89 52 189.14 36

tc2c320s24cf1 175.29 36 90.59 26

tc2c320s24cf4 169.86 36 124.03 30

tc2c320s24ct0 271.89 46 187.3 36

tc2c320s24ct1 170.24 37 90.55 26

tc2c320s24ct4 226.18 42 120.46 30

tc2c320s38cf0 266.17 44 176.92 36

tc2c320s38cf1 118.44 30 90.47 26

tc2c320s38cf4 219.52 42 119.75 29

tc2c320s38ct0 333.99 52 187.36 36

tc2c320s38ct1 119.55 30 89.95 26

tc2c320s38ct4 158.36 34 119.74 29
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