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Abstract
We investigate the Meal Delivery Routing Problem (MDRP), managing courier assign-
ments between restaurants and customers. Our proposed variant considers uncertainties 
in meal preparation times and future order numbers with their locations, mirroring real 
challenges meal delivery providers face. Employing a rolling-horizon framework inte-
grating Sample Average Approximation (SAA) and the Adaptive Large Neighborhood 
Search (ALNS) algorithm, we analyze modified Grubhub MDRP instances. Consider-
ing route planning uncertainties, our approach identifies routes at least 25% more profit-
able than deterministic methods reliant on expected values. Our study underscores the 
pivotal role of efficient meal preparation time management, impacting order rejections, 
customer satisfaction, and operational efficiency.

Keywords  Meal delivery routing · Uncertainty · Sample average approximation · 
Adaptive large neighborhood search

1  Introduction

Integrating the gig economy into first and last-mile delivery services for freight 
and passenger sectors has significantly revolutionized urban transportation. This 
shift is in response to the escalating demands for efficient last-mile deliveries. 
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Numerous startups specializing in restaurant meal delivery, such as Grubhub, 
Doordash, Deliveroo, Swiggy, and Ubereats, and on-demand transport services 
like Uber, Lyft, and Ola, have emerged to meet this growing need. Despite fac-
ing unique challenges, these services fundamentally address the same issue: they 
enable customers to conveniently request pickup and drop-off services through 
mobile apps or websites, typically ensuring delivery within a set timeframe. 
These companies charge a delivery fee, a portion of which is paid to the service 
provider. Success in this domain hinges on satisfying all parties involved: cus-
tomers expect prompt, affordable, and reliable service; drivers aim for substantial 
earnings; and restaurants seek to expand their reach and customer base through 
these delivery services.

Our research addresses a vital issue in the freight industry: the intricacies of rout-
ing for restaurant meal deliveries. This is an expanded form of the classical Pickup 
and Delivery Problem (PDP), known for its computational complexity. Unlike tra-
ditional PDP, which often focuses on the limitations of vehicle numbers, our study 
concentrates on the variable elements that can significantly affect the efficiency of 
operations. In the context of the gig economy, the concept of a fixed fleet size is 
replaced by a potentially limitless number of independent couriers who work on a 
flexible schedule. This flexibility, however, brings unpredictability in several aspects 
- such as the couriers’ working hours, their starting points for deliveries, and even 
their discretion to accept or decline orders.

Additionally, the variable nature of meal preparation times adds complexity to the 
food delivery sector. Minor variations in these times can lead to significant delays, 
adversely affecting customer satisfaction and the efficiency of delivery operations. 
The unpredictability of future orders intensifies this challenge, as the specific loca-
tions and quantities of these orders, crucial for route optimization, remain uncertain. 
Existing approaches in the meal delivery sector, such as those by Reyes et al. (2018) 
and Yildiz and Savelsbergh (2019), primarily rely on deterministic models with fixed 
meal preparation times and delivery windows, failing to account for the variability 
and unpredictability in these factors. In contrast, Ulmer et al. (2021) and Zheng et al. 
(2023) attempted to incorporate uncertainties in meal preparation and travel times, 
yet their models still lacked the dynamic adaptability required for real-life, uncertain 
scenarios. Relying on average estimates for meal preparation and future orders is 
insufficient, as this method overlooks the extensive range of variability and its influ-
ence on decision-making processes. These variables’ complex and often unknown 
probability distributions render simple average-based approaches ineffective. This 
unpredictability dramatically expands the range of potential scenarios, making tra-
ditional deterministic solutions unfeasible. Such deterministic models, not account-
ing for this variability, tend to underestimate necessary resources, leading to opera-
tional inefficiencies and decreased profitability. Our goal is to develop a probabilistic 
model that accurately accounts for these uncertainties, allowing for the creation of 
more reliable and effective routing strategies that enhance the performance of the 
meal delivery sector.

Given the intricate challenges of uncertain meal preparation times and the unpre-
dictable flow of orders, we’ve identified a collection of methods particularly adept 
at navigating the Meal Delivery Routing Problem (MDRP). To address the dynamic 
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and uncertain aspects of MDRP, we utilize a rolling horizon framework that inte-
grates the Sample Average Approximation (SAA) method with the Adaptive Large 
Neighborhood Search (ALNS), selected for its proven effectiveness in complex sce-
narios akin to MDRP. SAA, known for its strength in handling stochastic discrete 
optimization problems, uses a scenario-based approach to estimate the expected val-
ues of decision variables, considering various potential future states. This aspect is 
vital when relying on average estimates of uncertain factors, which could result in 
less optimal decisions. The SAA’s incorporation facilitates the dynamic modifica-
tion of routes in response to new information, aligning with the constantly chang-
ing delivery environment. This process involves repeatedly applying the SAA on 
selected scenarios over different time horizons, assessing the solutions against a 
broader range of scenarios to approximate the expected value function better, and 
updating routes based on actual developments. Such a strategy ensures that the solu-
tions are always relevant and adaptable to the immediate operational demands.

The Adaptive Large Neighborhood Search (ALNS) algorithm, highly effective 
for large-scale routing problems (Li et  al. 2016; Ghilas et  al. 2016a, b; Zhu and 
Sheu 2018a), is an integral complement to the SAA method in our approach. ALNS 
(Ropke and Pisinger 2006) is adept at exploring and optimizing within extensive 
solution spaces, making it particularly well-suited for addressing the Meal Delivery 
Routing Problem (MDRP). This algorithm is tailored to quickly adjust to changes in 
routing parameters, aligning with the unpredictable work schedules of couriers and 
the varying patterns of order acceptance typical in MDRP. Combining ALNS with 
the SAA method within a rolling horizon framework merges the SAA’s ability to 
approximate stochastic elements with ALNS’s capacity to efficiently navigate and 
fine-tune solutions in a broad and intricate solution environment. This synergistic 
approach enables us to develop resilient routing solutions in the face of uncertainties 
and adapt and respond to the dynamic nature of meal delivery operations.

The study primarily focuses on the challenges in the freight sector, particularly 
the restaurant meal delivery routing problem, a complex variant of the Pickup and 
Delivery Problem (PDP). This problem is characterized by unpredictable factors like 
varying courier availability, fluctuating working hours, and dynamic meal prepara-
tion times, significantly affecting operational efficiency. Traditional deterministic 
methods are inadequate due to the complexities and uncertainties involved, includ-
ing the unpredictable nature of future orders. The study explores advanced meth-
odologies like the Sample Average Approximation (SAA) and the Adaptive Large 
Neighborhood Search (ALNS) within a rolling horizon framework to address these 
challenges. These methods effectively handle the stochastic elements and com-
plex solution spaces of the Meal Delivery Routing Problem (MDRP). The research 
includes developing tailored algorithms for the MDRP, conducting computational 
tests with real-world data, and performing sensitivity analysis to evaluate algorithm 
performance under varying levels of uncertainty.

The main contributions are as follows: 

1.	 We developed innovative solution algorithms crafted explicitly for the meal deliv-
ery routing problem. These algorithms are strategically designed to adeptly handle 
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uncertainties, such as the variability in meal preparation times, the fluctuating 
number of orders, and their locations. This tailored approach ensures that the 
routing solutions are efficient and highly responsive to the dynamic nature of 
meal delivery operations.

2.	 Furthermore, we undertake comprehensive computational testing using data 
derived from real-world scenarios. These tests were extensive, covering a wide 
range of scenarios that included various combinations of uncertainties. This 
approach allowed us to rigorously evaluate the algorithms in conditions that 
closely mimic actual operational environments, thereby ensuring the robustness 
and reliability of our solutions in practical settings.

3.	 We conduct a detailed sensitivity analysis to scrutinize how the algorithms per-
formed under different levels of uncertainty. This systematic and thorough analy-
sis provided deep insights into the behavior and performance nuances of the 
algorithms when confronted with varying degrees and types of uncertainties. 
Through this sensitivity analysis, we identified strengths and potential areas for 
improvement in our algorithms, ensuring they are effective and adaptable to the 
complex and ever-changing landscape of meal delivery services.

The paper’s organization is as follows: Section  2 presents the literature review 
related to the MDRP and related problems. Section 3 formally introduces the MDRP 
and uncertainties considered. Section 4 describes the proposed solution algorithm 
for MDRP with uncertainties. Section 5 presents the test instances and discusses the 
computational results, followed by conclusions in Section 6.

2 � Literature Review

We divide the literature into two parts. First, we review the work on Meal-delivery 
routing and related problems, followed by literature on stochastic Pickup and Deliv-
ery problems (PDPs).

2.1 � Meal‑delivery Problems

Reyes et al. (2018) proposed a dynamic deterministic variant of a pickup and deliv-
ery problem called the Meal Delivery Routing Problem (MDRP), and they solved 
it using a rolling-horizon approach. Later, Yildiz and Savelsbergh (2019) proposed 
a mathematical formulation for the static variant and solved it using a simultane-
ous row and column generation-based algorithm. Both articles assumed unlim-
ited capacity for couriers, a fixed delivery window of 90 minutes from the order’s 
place, and fixed meal preparation times. Steever et al. (2019) relaxed the first two 
assumptions and allowed order placement from multiple restaurants. They pro-
posed a heuristic that accounts for future orders using equity and dispersion met-
rics. Ulmer et al. (2021) relaxed the latter two assumptions and proposed an antici-
patory customer assignment policy that accounts for the random meal preparation 
times. However, the above models (except Steever et al. (2019)) only match couriers 
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with orders and assume the couriers take the best routes. Moreover, they Yildiz and 
Savelsbergh (2019); Steever et al. (2019); Ulmer et al. (2021) also enforce the con-
straint of visiting all the orders. Liu (2019) proposes a MILP model for a problem 
similar to MDRP, where drones are used instead of regular couriers. Using drones 
helps remove uncertainty related to travel times and adds additional complexity, like 
charging requirements and limited capacity. Liao et al. (2020) proposes a two-stage 
solution algorithm for a static and deterministic variant of the problem to minimize 
carbon footprint. Recently, Zheng et  al. (2023) proposed an iterative greedy algo-
rithm to solve a meal delivery problem with uncertainties in meal preparation times 
and travel time and also proposed two time-saving strategies to improve the compu-
tational effort. However, their instances are not for dynamic scenarios closer to the 
real-life application.

2.2 � Stochastic Pickup and Delivery Problems

Stochastic variants of VRP have been extensively studied (Laporte et al. 2002; Verweij 
et al. 2003; Secomandi and Margot 2009; Chu et al. 2015; Ghilas et al. 2016b; Zhu and 
Sheu 2018b; Shi et al. 2018; Györgyi and Kis 2019; Karoonsoontawong et al. 2020; 
Fachini et al. 2022). We can categorize the solution approaches for these variants into 
two groups. The first group uses stochastic programming with recourse, a well-known 
framework for modeling uncertainty optimization problems. In this method, some data 
is unknown at the moment of planning. First, a decision is made, and then the recourse 
costs of the consequences of the plan are minimized. The second group uses a multi-
scenario approach, followed in this study. This method approximates expected costs 
by evaluating a solution based on generated scenarios. Metaheuristic algorithms are 
generally used in implementing the multi-scenario stochastic optimization approach. 
A good review of metaheuristic algorithms for stochastic combinatorial optimization 
can be found in Bianchi et al. (2009) and Gutjahr (2011).

Unlike the literature on stochastic VRP, literature on Pickup and Delivery Problems 
(PDP) with stochastic demands is limited. Powell et al. (1988) is one of the first studies 
that considered the dynamic PDP with stochastic demands. They also showed that con-
sidering uncertainty in the planning process results in substantial profits and increases 
the service level compared to the deterministic planning approach. In Ghilas et  al. 
(2016b) integrated the PDP with the public transport system and considered stochastic 
demands. Zhu and Sheu (2018b) proposed a failure-specific cooperative recourse strat-
egy for the simultaneous PDP with stochastic demand. Unlike the previous studies, Shi 
et al. (2018) considered uncertainty in travel and service times, Györgyi and Kis (2019) 
considered uncertainty in time windows. The typical result in all the above studies is 
that uncertainty in the planning process leads to significant improvements in objective 
over the deterministic case. In Zhang et al. (2023) introduced approximations based on 
the knapsack problem for estimating reward-to-go. These approximations serve as the 
foundation for creating efficient online scheduling policies and offline planning algo-
rithms. In Wang et al. (2023), focused on meeting customer delivery punctuality expec-
tations by estimating arrival times and success probabilities in uncertain scenarios. 
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Their estimated success probabilities tended to be conservative lower bounds. They 
also introduced a solution approach based on a branch-price-and-cut framework.

3 � Problem Description

Given a graph G(N,A) , where N  denotes the set of nodes representing locations 
such as restaurants and customers, and A represents the arcs between these nodes. 
We have a set T  , which represents tasks, divided into Tp for pickups and Td for 
deliveries. The set V  enumerates couriers involved in the delivery process. For 
each node i ∈ T  , there are associated service times si and time windows defined 
by earliest ei and latest li arrival times. The demand at each node is given by di , 
where positive values indicate pickups and negative values represent deliveries. 
Couriers k ∈ V  have specific on-times ek , off-times lk , and capacity constraints �k . 
They expect a minimum payment mk per unit time. The travel time between nodes 
i and j is denoted by tij . � , the cost per unit time, serves a pivotal role in our 
model by converting time metrics, like delay and waiting times, into cost metrics. 
Unlike cij , which directly represents the travel cost between nodes i and j , and pi , 
which denotes the payment received for order i . Customers at node i ∈ Td have a 
maximum willingness to pay wi . �i represents the deterministic time associated 
with waiting times and delays at each node i . xk

ij
 is a binary variable that is equal 

to 1 if courier k travels directly from node i to node j . ak
ij
 is a continuous variable 

representing the arrival time of courier k at node j from node i . yk
ij
 is a continuous 

variable representing the load carried by courier k when arriving at node j from 
node i . � is a random vector.

Subject to:

(1)max
∑

i∈Td

pi −
∑

i,j∈T

cij − �

(
∑

i∈Td

�i − E[Q(x, �)]

)

(2)pi ≤ wi

∑

j∈N

∑

k∈V

xk
ji

∀i ∈ Td

(3)cij ≥
∑

k∈V

mkx
k
ij
tij ∀i, j ∈ T , i ≠ j

(4)
∑

k∈V

(
∑

j∈T�{i}

xk
ji

)
≤ 1 ∀i ∈ T

(5)
∑

k∈V

(
∑

j∈T�{i}

xk
ij

)
=
∑

k∈V

(
∑

j∈T�{i}

xk
ji

)
∀i ∈ T
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The objective function Eq. 1 is designed to maximize expected profit while accom-
modating the stochastic nature of demand and service times. It explicitly includes pen-
alties for missed deliveries and service delays, addressed within the function’s third 
term. This term employs a cost factor, scaled by � , that increases proportionally with 
the deviation from scheduled delivery times. By incorporating this penalty, the func-
tion effectively quantifies the financial and service quality impact of delays, ensuring 
that operational strategies seek to optimize profitability and uphold reliability and cus-
tomer satisfaction. Constraints Eq. 2 limit the maximum payment expected from the 
customer. Constraints Eq.  3 ensure couriers receive at least the minimum expected 
payment. Constraints Eq.  4 ensure each pickup and delivery pair is visited at most 
once. Constraints Eqs. 5-6 ensure flow conservation at each node. Constraints Eq. 7 
track the arrival time at each node. Constraints Eq. 8 ensure the earliest arrival time at 
a node is respected. Constraints Eq. 9 ensure assignments to couriers are within their 
shift time. Constraints Eq. 10 ensure that the arrival time at the delivery node is later 
than the pickup node. Constraints Eq.  11 ensure demand satisfaction at each node. 
Constraints Eq. 12 ensure courier capacity is not violated. Constraints Eq. 13 ensure 

(6)
∑

j∈T

∑

i∈Tp

xk
ij
=
∑

j∈T

∑

i∈Td

xk
ji

∀k ∈ V , i ≠ j

(7)
∑

j∈N�{i}

∑

k∈V

ak
ji
≤

∑

j∈N�{i}

∑

k∈V

ak
ij
− (si + tij)x

k
ij

∀i ∈ T

(8)eix
k
ij
≤ ak

ij
∀k ∈ V , i ∈ T , j ∈ T�{i}

(9)ekx
k
ij
≤ ak

ij
≤ lkx

k
ij

∀k ∈ V , i ∈ N, j ∈ N�{i}

(10)
∑

j∈N�{i}

ak
ji
≤

∑

j∈T�{i+n}

ak
ji+n

∀k ∈ V , i ∈ P

(11)
∑

k∈V

∑

j∈N�{i}

yk
ij
− dix

k
ij
=
∑

k∈V

∑

j∈N�{i}

yk
ji

∀i ∈ T

(12)yk
ij
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k
ij

∀k ∈ V , i ∈ N, j ∈ N�{i}

(13)�i + li ≥
∑

k∈V

∑

j∈N

ak
ji
+ six

k
ij

∀i ∈ Td

(14)xk
ij
∈ {0, 1} ∀k ∈ V , i ∈ N, j ∈ N

(15)yk
ij
≥ 0, ak

ij
≥ 0, pi ≥ 0, cij ≥ 0 ∀k ∈ V , i ∈ N, j ∈ N
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that the actual delay experienced by the customer is at least as large as the service time 
plus the travel time, ensuring that no penalty is applied for early or on-time deliveries. 
Constraints Eqs. 14 and 15 define the decision variables’ domains, ensuring that routes 
are binary decisions and all other variables are non-negative.

Unlike the traditional vehicle routing problems, we allow the dropping of orders. 
Constraints Eq. 4 make this dropping of orders possible. The xk

ij
 terms in constraints 

Eqs. 3, 4, 8 and 11 avoid considering the dropped order in the estimation of payment 
from the customers, payments made to couriers, arrival time tracking, and courier 
load tracking, respectively.

3.1 � Recourse Action

The meal preparation times are realized when the courier arrives at the restaurant, 
and future orders from a restaurant can be realized only when the order is placed. The 
longer waiting times due to delays in meal preparation can violate the time windows. 
Suppose the delay is within the given buffer. In that case, a delay penalty will be added 
to the objective, or when the delay is beyond the allowed buffer, the orders are dropped, 
and a penalty is applied to the objective. Unrealized orders also impact the availability 
of couriers for future orders because of the detours taken to meet the realized orders.

3.2 � Modeling of Meal Preparation Times

We model the meal preparation time at each restaurant node as a random variable 
given by t + �i , where �i ≥ 0 is the duration of the stochastic disruption at node i and t 
is a deterministic meal preparation time. Specifically, �i follows a gamma distribution 
with a given shape parameter (k) and scale ( � ) parameter that depends on the deter-
ministic meal preparation time. The Gamma distribution is commonly used in the 
literature to describe stochastic times, as they follow convolution and non-negativity 
properties. The parameters k and � allow for the generation of scenarios considering 
the degree by which preparation times vary, adjusted by the coefficient of variation 
( ̂cv ). For our analysis, ĉ2

v
= 0.25 gave the best fit for the meal preparation times.

We derive parameters k and � for a given value ĉv as follows:

3.3 � Modeling of Future Orders and Their Locations

We assume that the number of orders within the upcoming interval follows a Poisson 
distribution with a mean arrival rate � , represented by Ot+1 ∼ Poisson(�) . The Pois-
son distribution is commonly used in the literature to represent random occurrences. 
After determining the number of orders, Ot+1 , we identify their probable locations.

We divide the customer base into central and peripheral segments using the Isola-
tion Forests method, as described by Liu et al. (2008). The proportion of custom-
ers within each segment denoted as �central for the central segment and �peripheral for 

(16)ĉv =
�(𝛿i)

Var(𝛿i)
=

k𝜃

k𝜃2
i

⇒ k =
1

ĉ2
v

;𝜃i = tĉ2
v
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the peripheral segment, guides the determination of potential future order sites from 
these segments.

Once the number of future orders is predicted, it is divided into central and 
peripheral orders based on the � values. Specifically, the predicted number of 
orders, Ot+1 , is multiplied by �central to determine the number of central orders and 
by �peripheral to determine the number of peripheral orders. These orders are then ran-
domly assigned within their respective segments.

For example, if the mean arrival rate � results in 10 predicted orders, with �central 
at 0.6 and �peripheral at 0.4, then six orders will be assigned to the central segment and 
four to the peripheral segment. Within each segment, orders are randomly selected 
based on the customer distribution in that area. This method ensures that the distri-
bution of future orders adapts to the network’s structure. We can accurately model 
future order locations within different network configurations using these propor-
tions and random selection within those segments.

4 � Solution Methodology

We first divide the total time into � time buckets based on an interval length of � . All 
orders (pickup list) are grouped into these buckets based on their order times. The 
couriers available within these buckets have also been identified (couriers list). We 
re-optimize using the ALNS at the end of each time bucket. Algorithm 1 presents 
the pseudo-code for the algorithm used.

We relocate the unused couriers to their nearest restaurant. In the case of a tie, we 
relocate the courier with the highest difference between its nearest and second near-
est restaurant. Couriers still performing deliveries from the previous buckets are not 
considered in the route planning of the present bucket.

Algorithm 1   Overview of the Rolling-Horizon framework implementation.
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To effectively handle the inherent uncertainties in the Meal Delivery Routing 
Problem (MDRP), we adopted the Sample Average Approximation (SAA) frame-
work (Kleywegt et al. 2002), renowned for its efficacy in solving stochastic optimi-
zation challenges. This choice is motivated by SAA’s ability to approximate com-
plex expected value functions, a method first pioneered by Verweij et al. (2003) for 
two-stage stochastic routing problems. SAA simplifies the expected value function 
�[R(x,�)] into a more manageable sample average function z(x) = 1

N

∑N

i=1
R(x, 𝜔̃i) , 

focusing on a subset of realizations from the random vector � . This approach allows 
us to solve a more refined SAA problem minx∈X �Ω(x), �Ω(x) = w�x + z(x) , using a 
large set of realizations Ω� = 𝜔̃1� ,… , 𝜔̃N�

,N� ≫ N , to approximate the true expected 
value. The process is iteratively refined until it meets predefined criteria, such as the 
maximum number of replications or a sufficiently small optimality gap.

Algorithm  2 illustrates the main steps of our SAA implementation. Unlike the 
initial implementations of the SAA framework proposed by Kleywegt et al. (2002), 
which performs a fixed number of replications of SAA over a fixed sample size 
|Ω| = N , we neither fix the number of replications nor samples used. Instead, we 
adjust the number of samples based on the gap ( �m ) in the current SAA replication, 
and the number of replications is solved until one of the two stopping criteria is met. 
Kleywegt et  al. (2002) uses 𝜖 = 𝜈Ω�(x) − v̂Ω as an estimator of the true optimality 
gap �Ω�(x) − v∗ , where v∗ is the optimal cost of the problem considering all possible 
realizations of � . By solving each SAA replication to optimality, it can be shown 
that v∗ − �[v̂Ω] is monotonically decreasing in N Verweij et al. (2003). Since in our 
approach, individual SAA problems are solved heuristically, and the objective is a 
maximization function. The estimate v̂Ω is not necessarily valid and tends to under-
estimate the true upper bound. However, we still compute and use the estimator v̂Ω 
to evaluate the performance of the SAA problems given the current sample size (N) 
and increase the sample size throughout the method, but only after achieving a cer-
tain level of convergence.

In SAA problems, choosing the sizes N and N′ is a trade-off between solution 
quality and computational efficiency. As the N value increases, the runtime of each 
SAA problem also increases, but the estimated upper bound, v̂𝜔 , tends to be stronger, 
which results in a smaller SAA gap. In our implementation, we use a fixed |Ω�| = N� 
throughout the algorithm and start solving the SAA problems over small sample sets 
|Ω| = N . An integer parameter Δ controls how many additional scenarios need to 
be considered (increase in N). We solve multiple replications of SAA with the same 
sample size N until they converge. Once they converge, we evaluate the gap �m , and 
if the gap is not within the tolerance, N is increased by Δ . This process is repeated 
until the gap is within the tolerance or the maximum value of N is reached. All solu-
tions obtained by solving each SAA replication are evaluated over a new set Ω� , and 
the best solution is returned. In Section  5, we conduct experiments to assess the 
implementation decisions taken in our SAA.



Meal Delivery Routing Problem with Stochastic Meal Preparation…

Algorithm 2   Overview of the proposed SAA framework implementation.

4.1 � Solving the SAA Problem

To solve the SAA problem maxx∈X w
�x +

1

N

∑N

i=1
R(x, 𝜔̃�) , we use an Adaptive Large 

Neighborhood Search (ALNS) heuristic. We modified the objective in the heuristic 
by adding the sample average function. As a result, we also modified the local search 
operators such that the marginal cost of an insertion considers both the changes in 
travel time and recourse costs over N scenarios Ω = 𝜔̃1,… , 𝜔̃N . In particular, com-
puting the change in the recourse costs before and after an operator is applied 
requires evaluating the modified solution (route) on the sample set Ω . Algorithm 3 
overviews how second-stage recourse costs are computed for a given first-stage solu-
tion and recourse policy (R) considering a sample of K realizations.

Recourse decisions described in Section  3 are applied to each a priori route 
in the first-stage solution based on the realization of meal preparation time and 
future orders. A new route (second-stage route) is obtained in which customers are 
dropped. The penalty �c is incurred for every order c ∈ U ⊂ C not visited in the sec-
ond-stage route and the delay cost for ones visited beyond the time window ( �c ). 
Finally, Algorithm 3 returns the average recourse cost for solution x computed over 
all scenarios in Ω.
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Algorithm 3   Evaluating stochastic costs for a ALNS solution x.

4.2 � Adaptive Large Neighborhood Search

To solve the Meal Delivery Routing Problem (MDRP) effectively, we implement the 
Adaptive Large Neighborhood Search (ALNS) algorithm, recognized for its adept-
ness in large-scale routing and ability to adapt to dynamic conditions like variable 
courier schedules and order patterns. The process begins with an initial solution cre-
ated using the random best insertion operator. This initial step is pivotal, as ALNS 
thrives on a starting point for optimization. In our approach, ALNS employs a dual 
strategy of high-impact and low-impact removal operators. High-impact operators, 
used every five iterations, remove both customer and restaurant nodes for substantial 
route adjustments, while low-impact operators, employed in other iterations, remove 
only customer nodes to refine the visit sequence within the same route.

These operators are chosen through a roulette wheel, guided by their previous per-
formance. This method ensures that operators with a successful track record, indi-
cated by higher weights, are more likely to be selected again. We utilize the simulated 
annealing (SA) criterion to accept new solutions. This criterion prefers solutions with 
higher profit but also, interestingly, accepts lower-profit solutions with a probability 
determined by e−(f (S∗)−f (S)∕kT) , where f (S) represents the solution’s objective value, T  
is the temperature, and k is the Boltzmann constant. The temperature T is methodically 
reduced by a factor � after each set of iterations at the current temperature. The ALNS 
process concludes either after reaching the maximum iteration limit or following � tem-
perature reductions without any improvement in solution quality, with � set at 100 in 
our study.
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This comprehensive method combines ALNS’s dynamic route optimization 
with the SAA method’s stochastic approximation. Integrating high-impact opera-
tors for broad changes and low-impact operators for fine-tuning, coupled with the 
SA acceptance criterion and temperature-based iteration control, creates a versatile 
and efficient system. This synergy between ALNS and SAA forms a sophisticated, 
flexible framework tailored to meet meal delivery logistics’ unique challenges and 
variabilities.

4.2.1 � Removal Operators

We use three removal operators: random removal and worst time removal introduced 
by Ropke and Pisinger (2006), and random route removal introduced by Hemmel-
mayr et al. (2012). Random and worst removal are modified to be used as high and 
low-impact operators, whereas route removal is used only as high-impact removal 
operators. In random removal, we randomly select q customers (restaurants for 
high-impact operators) and remove them from the solution. In case of worst-time 
removal, we calculate the gain in travel time after removing a customer and remove 
the first q customers (restaurants for high-impact operators) that will lead to the 
highest gain. We randomly remove r courier routes from the solution using random 
route removal.

4.2.2 � Insertion Operators

We use three new insertion operators: delivery deadline-based best insertion, best 
insertion with a limit on couriers, and lowest delay insertion, along with three inser-
tion operators from the literature: random best insertion, random best with pertur-
bation, and regret-2 insertion introduced by Ropke and Pisinger (2006). In all best 
insertion operators, we first calculate the insertion cost (increase in travel time) for 
the insertion of each node from the list of nodes removed using removal operators. If 
the node is a customer, we will only get the insertion cost for the courier containing 
its restaurant. In contrast, we will get the insertion cost for all the available couriers 
for a restaurant node. We randomly select a node, calculate its insertion cost, and 
insert it in the location, leading to the lowest cost increase in random best insertion. 
Random best with perturbation also works similarly to random best. The only differ-
ence is that we will introduce some noise to the insertion costs calculated and then 
insert it according to the revised insertion costs. We first rank the nodes based on the 
delivery deadline and use this order for insertion calculations in delivery deadline-
based best insertion. In the best insertion with a limit on couriers, we first calculate 
the insertion costs and check if the courier with the lowest insertion cost does not 
already cater to more than the limit. If the limit is not satisfied, we will insert it 
in the following best location. In the lowest delay insertion, we calculate the delay 
experienced by all the customers in the courier’s route and insert the route that leads 
to the lowest increase in delay. Unlike the previous myopic operators, regret-2 inser-
tion calculates the regret cost, which is the difference in the costs of inserting at the 
best location compared to its second-best location. We will then insert the nodes that 
have the highest regret costs.



	 S. R. Kancharla et al.

4.2.3 � Adaptive Weights

We use a roulette wheel mechanism to select the insertion and removal operators. 
Initially, all operators have equal weights, and the score of all operators is set to 
zero. We update operators’ scores in every iteration based on their performance. 
These scores are used to update the weights of the operators at the end of current 
temperature iterations, and then scores are reset to zero. Weights are updated as 
Wi

o
= Wi−1

o
+ si

o
∕�i , where Wi

o
 is the weight of the operator o after ith temperature 

reduction and si
o
 is the score of the operator o during ith temperature reduction, �i is 

the sum of scores of all operators in the respective category (low impact removal, 
high impact removal, insertion) during the ith temperature reduction. We maintain 
separate roulette lists for low and high-impact removal operators to make the learn-
ing of low and high-impact operators’ performance independent.

We use ALNS for each time bucket of the instance, so instead of making the 
ALNS learn about the operators’ performance from scratch, we pass the information 
about the operators’ weights from one time bucket to another.

5 � Results and Discussion

We use two instances from each set of set 0, set 1, and set 2 of MDRP instances created 
by Grubhub (https://​github.​com/​grubh​ub/​mdrpl​ib) to create a total of 24 smaller instances 
with total orders of 126, 134, and 177. The original instances are based on real-world 
order arrival patterns and courier starting locations from different metropolitan areas. The 
instance’s name gives complete information about the variations applied to it. For exam-
ple, an instance name 0o50t100s2p100c1v2 suggests that it belongs to set 0 with 50% of 
original orders (o50), original travel times (t100), optimized courier locations (s2), original 
order ready times (p100), considers first half of the orders (c1), and uses only second half 
of the couriers among the couriers available during the same time (v2).

We also include demand, time windows, maximum delay time allowed, and will-
ingness to pay for each order. We use a service time of 4 minutes for pickup and 
delivery and a per-minute courier compensation of $ 0.4. Table 1 lists the instances 
and their characteristics. The columns orders, restaurants, and couriers represent 
their numbers, respectively. The column Time windows list the mean and standard 
deviation of time windows used. Similarly, the columns Willingness To Pay (WTP) 
and Demand list their mean and standard deviation, respectively.

The rolling horizon framework with SAA and ALNS is implemented in Python. 
All instances are tested on an Intel Xeon Gold 5220 server running at 2.20GHz with 
72 cores and 188 GB RAM running CentOS-7. We allow parallel processing for 
solving multiple SAA replications.

5.1 � Parameter Tuning

We conducted rigorous parameter tuning, exploring a wide range of values for each 
parameter. After extensive testing, we identified the optimal parameters for our 

https://github.com/grubhub/mdrplib
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study: a temperature setting of 50, a temperature reduction factor of 0.98, a maxi-
mum of 10 times the number of orders for temperature reduction iterations, and 20 
times the number of orders for maximum iterations at a temperature. Additionally, 
we set the value of Ω� to 1000.

It’s well-known that increasing the maximum number of replications (N) gen-
erally leads to improved results, albeit with a substantial increase in computa-
tional time. To strike a balance between solution quality and runtime efficiency, 
we tested various values of N, ranging from 20 to 100 with increments of 20, on 
three instances, each representing a different set (refer to Table 2). Our experiments 
revealed that increasing N beyond 60 resulted in only marginal improvements in the 
objective, accompanied by a significant rise in runtime. Consequently, we opted for 
N=60 in this study, finding it to be the optimal compromise between solution quality 
and computational efficiency.

Table 1   Instances Details

Instance Orders Restaurants Couriers Time Win-
dow

WTP Demand

Mean Std Mean Std Mean Std

0o50t100s1p100mc1v1 126 64 40 57.02 8.94 7.40 3.38 1.99 0.80
0o50t100s1p100mc1v2 126 64 40 57.02 8.94 7.40 3.38 1.99 0.80
0o50t100s1p100mc2v1 126 60 40 56.17 8.60 7.43 3.41 1.91 0.79
0o50t100s1p100mc2v2 126 60 40 56.17 8.60 7.43 3.41 1.91 0.79
0o50t100s2p100mc1v1 126 64 47 57.02 8.94 7.40 3.38 1.99 0.80
0o50t100s2p100mc1v2 126 64 47 57.02 8.94 7.40 3.38 1.99 0.80
0o50t100s2p100mc2v1 126 60 47 56.17 8.60 7.43 3.41 1.91 0.79
0o50t100s2p100mc2v2 126 60 47 56.17 8.60 7.43 3.41 1.91 0.79
1o50t100s1p100mc1v1 134 64 35 56.78 9.33 7.31 3.30 2.09 0.80
1o50t100s1p100mc1v2 134 64 35 56.78 9.33 7.31 3.30 2.09 0.80
1o50t100s1p100mc2v1 134 66 35 56.40 8.83 6.81 3.39 2.16 0.80
1o50t100s1p100mc2v2 134 66 35 56.40 8.83 6.81 3.39 2.16 0.80
1o50t100s2p100mc1v1 134 64 35 56.78 9.33 7.31 3.30 2.09 0.80
1o50t100s2p100mc1v2 134 64 35 56.78 9.33 7.31 3.30 2.09 0.80
1o50t100s2p100mc2v1 134 66 35 56.40 8.83 6.81 3.39 2.16 0.80
1o50t100s2p100mc2v2 134 66 35 56.40 8.83 6.81 3.39 2.16 0.80
2o50t100s1p100mc1v1 177 93 61 58.25 9.49 7.30 3.34 1.90 0.79
2o50t100s1p100mc1v2 177 93 61 58.25 9.49 7.30 3.34 1.90 0.79
2o50t100s1p100mc2v1 177 88 61 58.67 9.54 7.25 3.17 2.04 0.85
2o50t100s1p100mc2v2 177 88 61 58.67 9.54 7.25 3.17 2.04 0.85
2o50t100s2p100mc1v1 177 93 70 58.25 9.49 7.30 3.34 1.90 0.79
2o50t100s2p100mc1v2 177 93 70 58.25 9.49 7.30 3.34 1.90 0.79
2o50t100s2p100mc2v1 177 88 70 58.67 9.54 7.25 3.17 2.04 0.85
2o50t100s2p100mc2v2 177 88 70 58.67 9.54 7.25 3.17 2.04 0.85



	 S. R. Kancharla et al.

5.2 � Stochasticity in Both Meal Preparation Times and Future Orders

This problem lacks established benchmark results. Consequently, we employ our 
Stochastic Approximation Algorithm (SAA) framework to generate stochastic 
and deterministic solutions where all random variables are substituted with their 
expected values. Subsequently, we compare both solutions’ routing costs (first stage) 
and recourse costs (second stage). Algorithm 2 is applied to compute the expected 
recourse cost, utilizing a scenario sample size of |Ω| = 1000. This experiment illus-
trates the impact of incorporating uncertainty on a stochastic solution’s first-stage 
decisions and costs.

In Fig. 1, we present a comparison between the deterministic and stochastic solu-
tions for the instances detailed in Table 1 using the recourse R. It is important to 
note that in R, no corrective actions are implemented; the second-stage costs solely 
account for penalties accrued due to missed orders and delays. This experiment gen-
erates scenarios with a coefficient of variance ĉv = 0.25. The results are averaged 
over three iterations of the SAA framework.

Table  3 indicates that employing probabilistic information, rather than relying 
solely on expected values, substantially boosts the objective value. This increase is 
primarily attributed to a significant rise in the total number of orders served, with 
an average increase of more than 13% across all datasets. However, it’s important 
to note that the computational runtime experiences a substantial surge, exceeding 
90% in all cases. This increase in runtime can be primarily attributed to the need for 
repeated solving for N replications of the SAA.

We ran two scenarios to see which stochastic variable is causing the significant 
increase in the number of orders served and, thereby, the objective value. In the 
first case, stochastic information about the meal preparation time alone is consid-
ered, and future orders are not considered. In the second case, stochastic information 
about the number of future orders alone is considered, and meal preparation times 
are assumed to be known.

5.3 � Stochasticity Only for Meal Preparation Times

Like the previous scenario, we analyze the routing and recourse costs in stochastic 
and deterministic contexts. Figure 2 and Table 4 depict the outcomes. Interestingly, 
incorporating stochastic data solely for meal preparation times did not significantly 

Table 2   Effect of the value of N 
on objective and runtime

N Objective Runtime (s) % ↑ Obj % ↑ runtime

20 1624.02 3052 − −
40 1642.56 3759 1.14 23.17
60 1773.14 5867 7.95 56.05
80 1777.79 7526 0.26 28.28
100 1780.33 11348 0.14 50.79
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enhance the solution compared to the deterministic approach. This was despite a 
considerable increase in runtime due to repeated problem-solving. Furthermore, 
not considering future orders led to a notable drop in the objective value, exceeding 
20% compared to the scenario where both meal preparation time and future orders 

Objective RecourseCost RouteCost

Set−0 Set−1 Set−2 Set−0 Set−1 Set−2 Set−0 Set−1 Set−2
−1000

0

1000

2000

Instance set

va
lu

e Solution
Deterministic
Stochastic

Fig. 1   Comparison of stochastic and deterministic solutions

Table 3   Percentage change in 
Objective value, Orders missed, 
and runtime by including 
probabilistic information of both 
meal preparation time and future 
orders

Instance set Percentage change

↑ Objective value ↓ Orders missed ↑ Runtime

Set-0 36.79 15.67 90.22
Set-1 27.56 17.16 90.18
Set-2 34.43 13.56 90.24

Objective RecourseCost RouteCost

Set−0 Set−1 Set−2 Set−0 Set−1 Set−2 Set−0 Set−1 Set−2
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Fig. 2   Comparison of stochastic and deterministic solutions with meal preparation time as the only sto-
chastic variable
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were considered stochastically. However, it is important to note that there was still 
an improvement over the purely deterministic solution.

5.4 � Stochasticity Only for Future Orders

Here, we assume that meal preparation times are predetermined while the num-
ber of future orders follows a probability distribution. Figure 3 and Table 5 illus-
trate the impact of incorporating probabilistic information instead of relying solely 
on expected values. Notably, we observe a substantial improvement in the objec-
tive value, exceeding 32%, and an increase in the number of orders served by more 
than 13%. As expected, this enhancement comes at the cost of a significant runt-
ime increase of over 90%. This approach yields superior solutions when considering 
meal preparation times and future orders as stochastic variables. The primary driver 
of this improvement is the precise knowledge of meal preparation times.

5.5 � Variation in the Level of Stochasticity for Both Meal Preparation Times 
and Future Orders

Our study aimed to explore how varying degrees of randomness in the system 
affect its performance, specifically looking at meal preparation times and order 

Table 4   Percentage change in 
Objective value, Orders missed, 
and runtime by including 
probabilistic information only 
for meal preparation times

Instance set Percentage change

↑ Objective ↓ Orders missed ↑ Runtime

Set-0 0.73 0.40 66.37
Set-1 3.60 0.93 62.45
Set-2 6.45 0.42 64.99

Objective RecourseCost RouteCost
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−1000
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Fig. 3   Comparison of stochastic and deterministic solutions with the number of future orders as the only 
stochastic variable
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frequencies. We employed two statistical distributions to achieve this: the gamma 
distribution for meal preparation times and the Poisson distribution for the number 
of orders. We adjusted a range of parameters within these distributions to simulate 
different levels of variability.

Firstly, we altered the gamma distribution’s shape parameter, which controls the 
variability of meal preparation times. The idea was to mimic real-world scenarios 
where some meals might be prepared quickly while others take longer. By increas-
ing the shape parameter, we introduced greater unpredictability in preparation times, 
reflecting a more realistic and challenging environment for the system.

Secondly, we modified the lambda parameter in the Poisson distribution, which 
dictates the average frequency of orders. This allowed us to simulate high and low-
order periods, examining how the system copes with fluctuating demand.

Through these adjustments, we sought to understand the system’s resilience to 
uncertainty comprehensively. As illustrated in Fig.  4, the results revealed a direct 
correlation: higher variability in both meal preparation times and order frequencies 
led to an increase in missing orders. This, in turn, had a ripple effect, causing a rise 

Table 5   Percentage change in 
Objective value, Orders missed, 
and runtime by including 
probabilistic information only 
for future orders

Instance set Percentage change

↑ Objective ↓ Orders missed ↑ Runtime

Set-0 46.06 16.67 91.19
Set-1 32.96 13.18 90.38
Set-2 47.11 14.50 90.30

Fig. 4   Comparison of solutions with variation in the level of stochasticity for both meal preparation 
times and future orders
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in both route and recourse costs as the system struggled to adapt to the heightened 
unpredictability.

This finding highlights the challenge of dealing with increased uncertainty in the 
system. As the orders and meal preparation times became more unpredictable, the 
system had difficulty managing resources and planning routes effectively. Despite 
efforts to adapt, the system faced more missed orders, driving up costs. These obser-
vations, as illustrated in Fig. 4, emphasize the delicate balance needed to handle the 
complexities of heightened uncertainty.

5.6 � Variation in the Level of Stochasticity Only for Meal Preparation Times

To study the impact of stochasticity in meal preparation times, we maintained a con-
sistent order distribution while varying the levels of uncertainty in meal prepara-
tion. As depicted in Fig. 5, there was a substantial rise in the percentage of missed 
orders, exceeding 40% in certain instances, especially when the shape parameter 
was increased by 50%. This trend was consistently observed across all three sets of 
instances.

As uncertainty increased and the distribution spread wider, meal preparation 
times grew longer. This extended waiting period affected delivery drivers, causing 
them to experience delays. Consequently, many orders had to be rejected due to the 
shortage of available drivers. This situation leads to delayed deliveries and results in 
lost sales opportunities and operational inefficiencies. Managing meal preparation 
times effectively is vital to optimizing resources, minimizing order rejections, and 
enhancing operational efficiency and customer satisfaction.

Fig. 5   Comparison of solutions with variation in the level of stochasticity only for meal preparation times
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5.7 � Variation in the Level of Stochasticity Only for Future Orders

To study the impact of stochasticity on the number of orders, we maintained consist-
ent meal preparation times while introducing different levels of uncertainty in future 
order numbers. As illustrated in Fig. 6, Surprisingly, the variation in future orders 
did not significantly influence the number of missed orders.

A closer analysis reveals an interesting phenomenon: a slightly higher influx of 
orders within shorter intervals might have resulted in the occasional missing of a 
few orders during peak rush periods. However, because the total number of orders 
remained constant, this brief rush was followed by relatively quieter periods. During 
quieter periods, all orders were successfully delivered because more time was avail-
able to handle these orders, given that they were spread out over a longer time frame.

6 � Conclusions

We introduced uncertainties in meal preparation times and future order locations as 
stochastic variables, emphasizing the crucial need to incorporate these uncertainties 
in route planning. Our approach involved employing a Sample Average Approxima-
tion method within a rolling horizon framework, utilizing the Adaptive Large Neigh-
borhood Search algorithm for the first-stage problem, and implementing a recourse 
action in the second stage.

We made significant observations Through extensive experiments on instances 
derived from Grubhub MDRP instances. The utilization of variables, rather than 

Fig. 6   Comparison of solutions with variation in the level of stochasticity only for future orders
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expected values, resulted in notably profitable routes, primarily due to accommo-
dating a larger number of orders. We explored scenarios where individual uncer-
tainties were relaxed. Notably, the performance did not significantly improve when 
uncertainty was considered, only in meal preparation times and disregarding future 
orders. It was, in fact, 20% worse due to the absence of future order considerations. 
Conversely, when only future orders were regarded as uncertain and meal prepara-
tion was assumed known, performance significantly improved, displaying an aver-
age enhancement of over 30%.

Furthermore, our study delved into the intricate dynamics of operational uncer-
tainties. We discovered that increased stochasticity could lead to more missed orders 
and escalated operational costs. Interestingly, occasional order misses were observed 
during peak demand periods, but these were compensated for during quieter times. 
The effective management of meal preparation times emerged as a pivotal fac-
tor influencing order rejections, customer satisfaction, and overall operational effi-
ciency. These findings underscore the necessity of adaptive strategies in balancing 
these trade-offs effectively, offering valuable insights for decision-makers in the 
operational management domain.
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