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Abstract

The two-echelon distribution system has emerged as a popular sustainable city logistic strategy. Earlier
studies consider only one vehicle class at each echelon and a single depot at the first echelon, whereas real-
world distribution systems can have multiple depots each operating multiple vehicle classes. In this paper,
the two-echelon routing problem is formulated by considering multiple depots and heterogeneous fleets.
The present study (a) introduces a Mixed Integer Linear Programming (MILP) formulation with load-
dependent fuel minimization objective, (b) uses driving cycle to represent speed variations along a path, (c)
allows the vehicles to return to any depot/satellite, and (d) conserves the total number of vehicles at each
depot/satellite. We call the problem a Multi-Depot Two-Echelon Fuel Minimizing Routing Problem (MD2E-
FMRP). Also, prior studies assume there is a fixed number of vehicles available at each satellite/depot,
whereas this study allows a different number of vehicles of each vehicle type at each satellite and depot.
The present formulation relaxes several unrealistic assumptions in existing two-echelon formulations and
hence has greater practical application. Despite the relaxation of constraints, the running time of our model
is comparable to existing formulations. Gurobi is used to find a better upper bound for up to 56 node
instances within a given time limit of 10,000s. We also propose an Adaptive Large Neighborhood Search
(ALNS) based heuristic solution that obtained results compared to previous algorithms in Two-Echelon
Capacitated Vehicle Routing Problem (2E-CVRP) instances and outperformed Gurobi in all the instances
of MD2E-FMRP. Results from the computational experiments show that there is an average saving of 13.11%
in fuel consumption even with an increase in distance traveled by 15.11%. Heterogeneous fleets consume
lesser fuel compared to homogeneous fleets.

Keywords: Multi-depot, Heterogeneous fleet, Adaptive large neighborhood search, Fuel consumption,
vehicle routing problem, Mixed integer linear programming.

1. Introduction

In recent years, many cities around the world are battling poor air quality. A recent report by World
Health Organization (WHO) (WHO, 2016) certified that 98% of cities in developing countries and 56%
of cities in developed countries with a population more than 100,000 do not meet air quality standards.
Freight vehicles constitute only 5% of road traffic yet they produce over 30-40% of the air pollution in
cities (Bathmanabhan and Madanayak, 2010). Even though freight transport plays a vital role in a cities’
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sustenance, their disproportionately higher negative effects have led city planners and managers to impose
restrictions on their movement. These restrictions include preventing large vehicles from entering parts of the
city entirely or during certain times of the day. In a traditional routing problem, goods are delivered to the
customers from a central depot using large trucks. In this process, these large trucks travel significantly longer
distances carrying less than truckload or running empty leading to more fuel consumption and emissions.
Adopting a two-level distribution system and smaller vehicles (Jacobsen and Madsen, 1980) could reduce
fuel consumption and emissions. Unwittingly, cities in developing economies have started adopting smaller
vehicles; most likely in response to vehicle restrictions. For example, in India, vehicle registrations of Light
Commercial Vehicles (LCV) have crossed Heavy Commercial Vehicles (HCV) in 2008-2009, and by 2012-
2013 they were twice the number of HCV registrations (MORTH, 2015). However, use of small vehicles
for longer distances may be inefficient; there are economies of scale benefits possible with the use of large
vehicles.

In a two-level distribution system, large trucks deliver goods to satellites, and then smaller trucks deliver
it to customers; literature (Jacobsen and Madsen, 1980) refers to this set-up as the two-echelon distribution
system. Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) determines vehicle routes in a two-
echelon distribution system. These multi-level systems have applications in express delivery services, grocery
and hypermarket-product distribution, spare-parts distribution, e-commerce and home delivery services, and
newspaper and press distribution (Perboli et al., 2011). In 2E-CVRP, routes and other decision variables in
both echelons are optimized. First, we optimize the routes and location of satellites in the second echelon.
The solution of the second echelon provides information about the accessibility of each satellite and its
demand which are required to optimize the routes in the first echelon. A heterogeneous fleet necessitates
finding the optimal mix of the fleet at each satellite and depot as well. Further, the need to improve air quality
compels us to consider sustainable performance measures as objectives in the routing problem. Adopting
sustainable performance measures may not be antithetical to profit-oriented freight operators. Fuel cost
alone contributes to 40% of the overall cost for logistic operators (Sahin et al., 2009), and fuel consumption
is directly related to emissions; minimizing fuel consumption rather than distance could deliver the best of
both worlds. Hence, using a heterogeneous fleet, optimizing over sustainable performance measures, and
multiple satellites and depots call for a new optimal route planning paradigm. In this paper, the two-echelon
routing problem is formulated by considering multiple depots and heterogeneous fleets. The present study
(a) introduce a MILP formulation with load-dependent fuel minimization objective, (b) uses driving cycle
to represent speed variations along a path, (c) allows the vehicles to return to any depot/satellite, and
(d) conserves the total number of vehicles at each depot/satellite. We call the problem a Multi-Depot
Two-Echelon Fuel Minimizing Routing Problem (MD2E-FMRP).

The present study relaxes several assumptions in literature (Feliu et al., 2007; Perboli et al., 2011; Jepsen
et al., 2013), such as ignoring the effect of acceleration in fuel consumption, fixing the number of vehicles at
each depot/satellite, every vehicle returning to its starting depot/satellite after all deliveries, and operating a
homogeneous fleet. The effects of these assumptions on fuel consumption and distance traveled are evaluated
individually. Previous studies (Demir et al., 2012; Franceschetti et al., 2013; Demir et al., 2014) model the
effect of load and speed on fuel consumption but ignore the effect of acceleration/deceleration. The effect
of acceleration will be significant in the case of urban areas where stop and go conditions are prevalent.
To the best of our knowledge, existing literature does not consider the effects of acceleration/deceleration
patterns on fuel consumption. We use driving cycles (a series of data points representing the second-by-
second speed of a vehicle) to estimate fuel consumption. Operating a heterogeneous fleet with varying fleet
sizes at each of the depots/satellites is increasingly observed in the real world. Our formulation incorporates
above real-world observations and hence has greater practical appeal. We also allow vehicles to end at a
different depot/satellite simultaneously conserving the total flow from each of these depots/satellites.

The objective of the proposed Multi Depot Two-Echelon Fuel-Minimizing Routing Problem (MD2E-
FMRP) is to identify a set of routes that minimizes total fuel consumed in both the first and second echelons
of the distribution system. Figure 1 is a typical solution to MD2E-FMRP. In this figure, stars represent
depots, diamonds represent satellites, and circles represent customers. It highlights several features of the
proposed MD2E-FMRP: (a) Heterogeneous Fleet: It uses four different vehicle classes. They are represented
by different line types as shown in the figure. Two different vehicle classes are used to make deliveries from
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Figure 1: A solution to MD2E-FMRP

depot D2 and satellite S3. (b) Split delivery to satellite: Multiple vehicles visit satellite S3. (c) No need
to return to the same depot: A vehicle that started at S2 ends at S1, while another vehicle that started
at S1 ends at S2. (d) Multi-depot: Two depots are considered for deliveries. (e) No split in delivery to a
customer: Only one vehicle serves every customer.

The present study is the first, to the best of our knowledge, to consider multiple depots in the first echelon
and heterogeneous fleet in both echelons. Existing 2E-CVRP formulations (Perboli et al., 2011; Jepsen et al.,
2013; Soysal et al., 2015) are incapable of handling multi-depots and heterogeneous fleets. In Perboli et al.
(2011) constraints which identify the load on edge ensure sub-tour elimination; this approach can handle
single-depot problems only. Similarly, the sub-tour elimination constraints in another study by Jepsen et al.
(2013) cannot handle heterogeneous fleet. Also Jepsen et al. (2013) had an additional index for each vehicle
that increases the number of variables drastically. Another study by Soysal et al. (2015) did not consider
split-deliveries in the first echelon and their flow based formulation does not require sub-tour elimination.
Our study allows split deliveries from multiple depots and because the formulation is flow-based, there is no
need for specific sub-tour elimination constraints.

Extensive computational experiments are carried out with the proposed formulation. Even though
the proposed MD2E-FMRP model has relaxed several assumptions, its computation time is comparable to
existing formulations. The Gurobi Optimizer is used to find a better upper bound for up to 56 node instances
within the given time limit of 10,000s. We propose a state-of-the-art Adaptive Large Neighborhood Search
(ALNS) based heuristic solution that obtained excellent solutions in a short time (less than one-tenth of
Gurobi) for most cases.

The organization of the paper is as follows: In section 2 literature review on 2E-CVRP and related
problems is presented. In section 3 MD2E-FMRP is introduced, and provides a mathematical formulation.
In section 4 the ALNS based heuristic is introduced for MD2E-FMRP. Section 5 introduces the test instances
for MD2E-FMRP and discusses the computational results, followed by conclusions in section 6.

2. Literature Review

In recent times, with the increase in urban freight traffic in many cities, the 2E-CVRP has received
considerable attention (Feliu et al., 2007; Perboli et al., 2011; Jepsen et al., 2013). The two-echelon routing
problem was first introduced by Jacobsen and Madsen (1980) though they use a different name for the
problem. They had considered the newspaper distribution problem with few transfer points. They identify
the number and location of such transfer points’, and then routes from the printing office to transfer points to
retailers. They developed a heuristic that assigns the retailers to the nearest transfer point and subsequently
solves both first and second levels. The term 2E-CVRP was first coined by Feliu et al. (2007). They proposed
a mathematical model that was later strengthened using a family of inequalities by Perboli et al. (2010). The
strengthened model solved seven new instances to optimality and reduced the optimality gap in several other
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instances. However, the model proposed by Feliu et al. (2007) and Perboli et al. (2011) may not provide
tight upper bounds for cases with more than two satellites. Since many real-world cases have more than two
satellites, Jepsen et al. (2013) proposed an edge flow based formulation, derived from the formulations of
Capacitated Vehicle Routing Problem (CVRP) and Split-Depot Vehicle Routing Problem (SDVRP). Their
formulation had fewer variables compared to the previous model by Perboli et al. (2011), but few of the
constraint sets grew exponentially. To overcome this issue, the authors came up with a specialized branch
rule for the branch-and-cut algorithm to find the optimal solution.

Most of the studies (Perboli et al., 2011; Crainic et al., 2011; Nguyen et al., 2012b) first decompose the
2E-CVRP to either CVRP or Multi Depot CVRP and then solve using heuristic methods such as math-based
heuristic (Perboli et al., 2011), multistart heuristic (Crainic et al., 2011), hybrid ant colony optimization
(Meihua et al., 2011), Adaptive Large Neighborhood Search (ALNS) (Hemmelmayr et al., 2012), and Greedy
Randomized Adaptive Search Procedure (GRASP) (Nguyen et al., 2012b). Among these ALNS, is the best
performing heuristic (Cuda et al., 2015) for 2E-CVRP.

We briefly review the literature on three close variants of 2E-CVRP. First, 2E-CVRP with the assumption
that vehicles in the first echelon can also deliver to customers directly. Second, Two-Echelon Capacitated
Location Routing Problem (2E-CLRP), which combines location and routing decisions on two levels. It aims
to minimize total cost (the sum of the fixed costs for opening the facilities, the usage cost of the vehicles,
and the routing costs) by finding the optimal set of location sites for the depots and satellites as well as
vehicle routes that satisfy the customer demands that do not violate the capacity constraints. Finally, the
Truck Trailer Routing Problem (TTRP) that aims at identifying the routes that can be visited by a truck
alone, a truck with a trailer, and a combination of these two depending on the constraints.

There are not many studies on the 2E-CVRP variant with first level vehicles delivering to both satellites
and customers. Escúın et al. (2012) is one of the first studies that allowed the first level vehicles to deliver
to customers. Recently, a study by Abdulkader et al. (2018) followed a similar approach and they called it
vehicle routing in omni-channel distribution.

Boccia et al. (2010) formally introduced the 2E-CLRP. They proposed a Tabu Search (TS) based heuristic
by extending the nested approach (Nagy and Salhi, 1996) and two-phase iterative approach (Tuzun and
Burke, 1999) for LRPs. Later, Boccia et al. (2011) introduced three MILP formulations using one, two,
and three index variables. Based on the computational experiments it was found that the three-index
formulation outperformed the two-index formulation on medium-sized instances and provided better lower
bounds. Similar to the 2E-CVRP, the 2E-LRP problem is divided into two LRPs, one at each echelon
that enabled the application of algorithms developed for CLRP (Toyoglu et al., 2012). A branch-and-cut
algorithm proposed by Contardo et al. (2012) solved 75 out of 147 instances to optimality. ALNS heuristic
introduced by the same authors outperformed all the previous heuristics as it was able to improve 133 Best
Known Solutions (BKS) out of 147. Schwengerer et al. (2012) presented a Variable Neighborhood Search
(VNS) by extending the algorithm proposed for LRP. It was able to outperform heuristics proposed in
Nguyen et al. (2012a,b), but on an average, it was outperformed by ALNS (Boccia et al., 2011). Nguyen
et al. (2012a,b) studied 2E-CLRP with a Single Depot, a special case of 2E-LRP, and proposed a two-
index Integer Linear Programming (ILP) model and a GRASP complemented by a learning process with a
path relinking procedure heuristic. The same authors proposed a MILP model and a multi-start Iterated
Local Search (ILS) algorithm coupled with few simpler and less performing heuristics. However, based on
computational experiments it is found that ALNS outperformed multi-start ILS (Nguyen et al., 2012a,b).

The MD2E-FMRP presented here does not include location decisions and related costs in the objective
function for opening satellites/depots. However, it includes the decision whether or not to use a satellite for
customer delivery. ALNS which has worked very well with 2E-CLRP problems and its variants are expected
to perform well for the MD2E-FMRP.

Unlike the 2E-CVRP literature, heterogeneous fleets are well-studied in the VRP literature. The first
paper which tackled TTRPs is by Semet and Taillard (1993). The term TTRP was first coined by Chao
(2002) where a heuristic that requires an initial feasible solution that is improved using TS is proposed to
handle Capacitated TTRP (CTTRP). Scheuerer (2006) proposed a heuristic comprising of two constructive
heuristics and a TS algorithm to solve the CTTRP. The first constructive heuristic is called T-Cluster,
which uses a cluster-based sequential insertion procedure where routes are constructed one-by-one until the
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vehicle is fully utilized. The second constructive heuristic is called T-Sweep, derived from the classical sweep
algorithm followed by TS. This algorithm was able to outperform the heuristic introduced by Chao (2002).
Simulated Annealing based algorithm proposed by Lin et al. (2009) was able to outperform Chao (2002)
and performed slightly better compared to Scheuerer (2006). This algorithm was later extended to solve
Relaxed TTRP (Lin et al., 2010) (where the limited fleet constraints are removed) and CTTRP with Time
Windows (Lin et al., 2011). Villegas et al. (2011) proposed a hybrid meta-heuristic based on GRASP, VNS,
and path relinking. Computational results showed that the GRASP/VNS with evolutionary path relinking
has better performs on average compared to previous algorithms. Mirmohammadsadeghi and Ahmed (2015)
extended this problem to include stochastic demands and proposed a memetic heuristic approach to solve
the problem. Heterogeneous fleet considered in MD2E-FMRP allows more than two classes of vehicles.
Urban freight needs a wider range of vehicle types to cater to the demands efficiently. Hence, we refer our
problem as MD2E-FMRP with heterogeneous fleets.

Most of the above studies considered distance minimization as their objective with a fixed cost. To the
best of our knowledge, there are only two studies (Crainic et al., 2012; Soysal et al., 2015) that considered
fuel minimization as an objective in two-echelon problems. Crainic et al. (2012) divided a day into eight time
zones with different speeds. They tested the model for all time zones and compared the fuel consumption
for each time zone. However, their model did not consider variation in speed explicitly. To overcome this
issue, Soysal et al. (2015) incorporated time-dependent speed in the second echelon for few links in certain
time zones and assumed free-flow speeds for remaining links. Even in time-dependent routing problems,
speed in a particular time zone is constant. In the present study, driving cycle, which is a more realistic
representation of speed and variations in driving speed, is used. The use of average speeds instead of driving
cycle leads to significant overestimate of fuel consumption (Kancharla and Ramadurai, 2018), and hence
alters route plans which are analyzed in this study.

3. Model Formulation

3.1. Problem statement

It is required to deliver goods from depots to customers through a set of satellites using heterogeneous
fleets at both levels. In the first echelon, goods are delivered from the depot to the satellites by large trucks.
In the second, goods are delivered from the satellites to the customers using smaller trucks. The demand
of each customer is given and fixed, whereas the satellites’ demands depend on the customers it serves.
Each customer must be visited exactly once, but a satellite can be visited multiple times till the demand is
satisfied. Additionally, not all satellites need to be used and the decision whether to use a satellite is not
known in advance. Each depot/satellite has a limited, but a different number of vehicles available for use
and finally, we assume all vehicles use the same type of fuel. The objective is to minimize total fuel costs.

3.2. Fuel consumption estimation

Fuel consumption depends on many parameters such as speed, acceleration, load, grade, and gravity.
However, the traffic state restricts the ranges of speed and acceleration.

We use the Comprehensive Modal Emission Model (CMEM) (Barth et al., 2004, 2005) for fuel consump-
tion estimation. Earlier studies on VRP that have applied the CMEM include Bektas and Laporte (2011),
Franceschetti et al. (2013), and Soysal et al. (2015). This model is selected because it takes into account all
the above parameters. Moreover, this model can be applied for heavy duty diesel vehicles as well as smaller
pick-up trucks. CMEM consists of three modules, namely an engine power module, an engine speed module,
and a fuel rate module (Barth et al., 2004, 2005).

Engine Power (P) requirement is calculated using:

P =
(Ma+Mg sin θ +MgCr cos θ + 0.5CdρAv

2)v

1000ε
+ Pacc, (1)

where v is the speed (m/s), a is acceleration (m/s2), M is the gross vehicle weight (kg), g is the gravitational
constant (m/s2), θ is the road grade angle in degrees, ρ is the air density (kg/m3,), A is the frontal surface
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area (m2), Cd is the coefficient of aerodynamic drag, Cr the coefficient of rolling resistance, ε is the vehicle
drive train efficiency, P is the second-by-second engine power output (kW ), and Pacc is the engine power
demand associated with running losses of the engine and the operation of vehicle accessories such as usage
of air conditioning (assumed to be 0, similar to Demir et al. (2011)).

Engine speed (N) is interpolated between idle rpm and governing rpm using the speed of vehicle at that
moment and then Fuel Rate (FR) is calculated as follows:

FR =
ϕ(kNV + P/η)

U
(2)

where ϕ is fuel-to-air mass ratio, k is the engine friction factor, V is the engine displacement (in liters), η is
a measure of indicated efficiency for diesel engines, and U is the lower heating value for the fuel. For ease
in computing, equation (2) is simplified as follows.

Substituting (1) in (2)

FR =

ϕ

(
kNV +

(Ma+Mg sin θ +MgCr cos θ + 0.5CdρAv
2)v

1000εη
+
Pacc
η

)
U

(3)

Pacc is assumed to be 0. Hence, (3) can be rewritten as follows.

FR =
ϕ

U

(
kNV +

0.5CdρAv
3

1000εη

)
+M

ϕv

U

(
a+ g sin θ + gCr cos θ

1000εη

)
(4)

FR = α+ βM, (5)

where

α =
ϕ

U

(
kNV +

0.5CdρAv
3

1000εη

)
is the weight independent part,

βM =
ϕv

U

(
a+ g sin θ + gCr cos θ

1000εη

)
M is the weight dependent part, and

M is the total weight of vehicle including load carried and curb weight of vehicle.
Simplification of the above equation allowed for preprocessing the matrices of α and β using the driving
cycle data for each link, thus reducing the run-time. The only unknown data M (weight) is a variable in
the formulation which is obtained while solving the model.

3.3. Why driving cycle?

Is average speed good enough to estimate fuel consumption or does use of a driving cycle improve the
accuracy? To investigate this the amount of fuel consumed by different fully loaded trucks for traversing
a length of 7 km with zero gradient is computed using US EPA driving cycle (LA4 and heavy-duty urban
dynamometer driving schedule) and average speed of driving cycle. When average speed is used instead of
variable speed, the fuel consumption estimated for a small truck (< 2 tonne), medium truck (3 tonne), and
heavy truck (>5 tonne) is less by approximately 70%, 130%, and 160%, respectively. The variation in fuel
consumption may have little effect on the optimal solution for a homogeneous fleet problem. However, for
a heterogeneous fleet problem with fuel-minimizing objective, the effect will be significant. Therefore, the
use of average speed will lead to sub-optimal results (Kancharla and Ramadurai, 2018).

3.4. Description of model

This section presents the four-index mixed integer linear programming formulation of the MD2E-FMRP.
The present model is a multi-commodity flow based formulation that accounts for multiple depots and
heterogeneous fleets in both echelons. The formulation for the second echelon is a straightforward extension
of an earlier formulation with an additional index for vehicles. However, the first echelon is significantly
different as the present problem allows the deliveries to be split from different depots using a heterogeneous
fleet, whereas earlier formulations in literature had a single depot and homogeneous fleet.
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We define this problem on a graph G = (V,E) where V = {T, S, C} is the set of vertices containing
subsets- depots (T), satellites (S), and customers (C) and E = {(a, b) : a, b ∈ V and a 6= b} is the set of
edges, first subset has edges with one vertex in a ∈ T ∪ S and other in b ∈ S, and another subset with
one vertex in a ∈ S ∪ C and other in b ∈ C. H is the set of the first echelon vehicles and M is the set
of the second echelon vehicles. The fleet size of each vehicle type (h ∈ H,m ∈ M) at each depot (t ∈ T)
and satellite (s ∈ S) is γht and δms , respectively. Capacities and curb weight of a heavy (medium) vehicle is
ζh(ζm) and ψh(ψm), h ∈ H and m ∈M respectively. αhij , β

h
ij are weight independent and weight dependent

fuel consumption components for traveling between i ∈ (T ∪ S) and j ∈ (T ∪ S), i 6= j using vehicle type
h in the first echelon. Similarly αmkl, β

m
kl are for traveling between k ∈ S ∪ C and l ∈ S ∪ C, k 6= l using

vehicle type m in the second echelon. It is assumed that there is at least a unit demand (dc) of freight at
each customer (c ∈ C). ξ is the fuel cost.

The variables corresponding to the first echelon are defined as follows: xthij ∈ Z+ is the number of vehicles

of type h ∈ H starting from depot t ∈ T and going from i ∈ (T ∪ S) to j ∈ (T ∪ S), i 6= j; and Qthij ∈ R+

is the quantity of freight carried on edge {(i, j) | i and j ∈ T ∪ S and i 6= j} by a vehicle of type h ∈ H
starting from depot t ∈ T. For the second echelon, the variables are defined as follows: ysmkl ∈ {0, 1} is equal
to 1 iff a vehicle of type m ∈M starting at satellite s ∈ S and going from k ∈ (S ∪C) to l ∈ (S ∪C), k 6= l
and Qsmkl ∈ R+ is the amount of freight carried on edge {(k, l) | k and l ∈ S ∪C and k 6= l} by a vehicle of
type m ∈M starting from a satellite s ∈ S.

Notations

T = {1,2,··· ,t,···} Set of depots
S = {1,2,··· ,s,···} Set of satellites
C = {1,2,··· ,c,···} Set of customers
H = {1,2,··· ,h,···} Set of vehicle types available in first echelon
M = {1,2,··· ,m,···} Set of vehicle types available in second echelon
γht Number of the first echelon vehicles of type h ∈ H available at depot t ∈ T
δms Number of the second echelon vehicles of type m ∈M available at satellite s ∈ S
ζa Capacity of vehicle type a ∈ H ∪M
αhij Load independent fuel component for first echelon vehicle (h ∈ H) when traveling on

edge (i, j) ∈ S ∪T
βhij Load dependent fuel component for first echelon vehicle (h ∈ H) when traveling on

edge (i, j) ∈ S ∪T
αmkl Load independent fuel component for second echelon vehicle (m ∈M) when traveling

on edge (k, l) ∈ S ∪C
βmkl Load dependent fuel component for second echelon vehicle (m ∈M) when traveling

on edge (k, l) ∈ S ∪C
xthij Total number of vehicles of type h ∈ H starting from depot t ∈ T and going from

i ∈ (T ∪ S) to j ∈ (T ∪ S), i 6= j
ysmkl Binary variable equal to 1 if the second echelon edge (k, l) ∈ S∪C is used by vehicle

m ∈M starting from satellite s ∈ S
Qthij Flow through edge (i, j) ∈ S ∪T by vehicle type h ∈ H starting from depot t ∈ T in

first echelon
Qsmkl Flow through edge (k, l) ∈ S∪C by vehicle type m ∈M starting from satellite s ∈ S

in second echelon
whts Demand of satellite s ∈ S satisfied by depot t ∈ T using vehicle h ∈ H
ξ Fuel cost per liter
ψh (ψm) Curb weight of vehicle type h ∈ H(m ∪M)
dc Demand of freight at customer c ∈ C. (dc > 1)
Ω Large positive integer
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MD2E-FMRP is formulated thus:

min
∑
t∈T

∑
h∈H

∑
i,j∈T∪S
i6=j

((αhij + βhijψh)xthij + βhijQ
th
ij )ξ + (6a)

∑
s∈S

∑
m∈M

∑
k,l∈S∪C
k 6=l

((αmkl + βmklψm)ysmkl + βmklQ
sm
kl )ξ (6b)

The objective function comprises two parts. Part 1 (6a) is minimization of fuel cost in first echelon where
(αhij + βhijψh)xthij is the amount of fuel consumed by net weight of vehicle and βhijQ

th
ij is the additional fuel

consumed by weight carried by the vehicle. Similarly, Part 2 (6b) is for the second echelon. Objective is to
minimize total fuel cost in both levels subject to constraints (7)-(27).∑

j∈S

xthtj ≤ γht ∀ t ∈ T, h ∈ H (7)

∑
j∈S

xphpj =
∑
t∈T

∑
j∈S

xthjp ∀ p ∈ T, h ∈ H (8)

∑
t∈T

∑
i∈S∪T
i6=s

Qthis −
∑
t∈T

∑
i∈S∪T
i 6=s

Qthsi =
∑
t∈T

whts, ∀ s ∈ S, h ∈ H (9)

∑
h∈H

∑
t∈T

∑
j∈S

Qthjp = 0, ∀ p ∈ T (10)

xthij ≤ Qthij ∀ t ∈ T, h ∈ H, {(i, j) | i and j ∈ T ∪ S and i 6= j} (11)

Qthij ≤ ζhxthij ∀ t ∈ T, h ∈ H, {(i, j) | i and j ∈ T ∪ S and i 6= j} (12)∑
s∈S

Qthts =
∑
s∈S

whts, ∀ t ∈ T, h ∈ H (13)∑
i∈S∪T

xthis =
∑
i∈S∪T

xthsi ∀ s ∈ S, t ∈ T, h ∈ H (14)

Constraints (7)-(14) are for the first echelon. Constraints (7) ensure that routes using a specific vehicle type
v starting from a depot are not exceeding the maximum available vehicles at that depot. Constraints (8)
allow vehicles to end at any depot and at the same time ensure that total vehicles entering is equal to the
total vehicles leaving for each depot. Constraints (9) are for demand conservation at satellites. Constraints
(10) will not allow residual flows in routes with depot as tail node. Constraints (9) - (10) also determine the
load on each link. Constraints (11) ensure that quantity of freight carried and number of vehicles from a
depot are jointly positive or jointly zero. These constraints help in tightening the formulation. Constraints
(12) impose vehicle capacity constraints. Constraint (13) ensures the total load carried from a depot equals
the load delivered from the depot and this constraint along with constraints (11) and (12) help in sub-tour
elimination. Constraints (14) ensure the number of vehicles entering and leaving any satellite in the first
echelon is equal. ∑

t∈T

∑
h∈H

whts =
∑
m∈M

∑
k∈S∪C

∑
c∈C

ysmkc dc, ∀ s ∈ S (15)

Constraints (15) are the connection between both echelons. It allows a first level route to connect to a

8



satellite only if there are second level routes starting from that satellite.∑
l∈C

ysmsl ≤ δms ∀ s ∈ S,m ∈M (16)∑
l∈C

ypmpl =
∑
s∈S

∑
l∈C

ysmlp ∀ p ∈ S,m ∈M (17)∑
s∈S

∑
m∈M

∑
k∈C∪S
k 6=c

Qsmkc −
∑
s∈S

∑
m∈M

∑
k∈C∪S
k 6=c

Qsmck = dc, ∀ c ∈ C (18)

∑
m∈M

∑
s∈S

∑
k∈C

Qsmkp = 0, ∀ p ∈ S (19)

Qsmsl ≤ ζmysmsl ∀ l ∈ C, s ∈ S,m ∈M (20)∑
m∈M

∑
s∈S

∑
k∈S∪C

ysmkc = 1, ∀ c ∈ C (21)∑
k∈S∪C

ysmkc =
∑

k∈S∪C

ysmck ∀ c ∈ C, s ∈ S,m ∈M (22)

xthij ∈ Z+ ∀ t ∈ T, h ∈ H, {(i, j) | i and j ∈ T ∪ S and i 6= j} (23)

ysmkl ∈ { 0, 1} ∀ s ∈ S,m ∈M, {(k, l) | k and l ∈ C ∪ S and k 6= l} (24)

whtj ∈ R+, ∀ t ∈ T, h ∈ H, j ∈ T ∪ S (25)

Qthij ∈ R+, ∀ t ∈ T, h ∈ H, {(i, j) | i and j ∈ T ∪ S and i 6= j} (26)

Qsmkl ∈ R+, ∀ s ∈ S,m ∈M, {(k, l) | k and l ∈ C ∪ S and k 6= l} (27)

Constraints (16)-(22) are for the second echelon. Constraints (16) ensure the routes from a satellite are not
more than the available vehicles at that satellite. Constraints (17) allow vehicles to end at any satellite and
at the same time ensure that the total vehicles entering is equal to the total vehicles leaving each satellite.
Constraints (18) conserve flow at each customer and also help in sub-tour elimination. Constraints (19) will
not allow residual flows in routes with satellite as tail node. Constraints (18) and (19) also determine the
load on each link. Constraints (20) impose vehicle capacity constraints at second level routes. Constraints
(21) allow a customer to connect to only one satellite. Constraints (22) ensure flow conservation at each
customer. Constraints (23)-(27) specify the domain of the variables.

Our formulation allows split-deliveries; multiple vehicles can visit each satellite. Allowing split-deliveries
can lead to better solutions. For example, consider a case with one depot and five satellites as shown in Figure
2. The distance between the depots and satellites are shown above each arc. The satellites are numbered
S1 through S5 and let us assume the demand at a satellite is known (shown beside the satellite number).
The number below each arc is the load carried by the vehicle on that arc. Figure 2a is the optimal solution
without split deliveries. The total distance traveled is 674.924 units. Allowing split deliveries (Figure 2b)
reduces the distance traveled to 606.450 units. From the solution and the Figure 2, it is clear that with
split-deliveries all the demands can be satisfied at a lower cost with lesser vehicles. However, split-deliveries
introduces additional complexities. When two vehicles visit the same location there is a possibility of freight
exchange between them - also referred to as transshipment. Here, constraints (13) prevent transshipment.
Considering transshipment requires altering the overall cost in the objective function.
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Figure 2: Different cases for split-deliveries

4. Heuristic Solution Algorithm for MD2E-FMRP

MD2E-FMRP is solved using a hybrid heuristic that uses Adaptive Large Neighborhood Search (ALNS)
algorithm for both echelons. ALNS, introduced by Ropke and Pisinger (2006), is one of the effective
heuristics that can handle large-scale vehicle routing problems. Below we describe a detailed explanation of
the algorithm implementation.

4.1. Overview of algorithm framework

While ALNS has been used in the past for solving vehicle routing problems, the present implementation
has few new challenges. The number of open satellites and their demands are unknown. Further, multiple
depots can serve these satellites. Allowing a heterogeneous fleet mix also adds another dimension to solving
the problem. To overcome these challenges, the second-echelon problem, which determines the number of
open satellites and the exact demands of these satellites, is solved first.

The second echelon problem can be considered as equivalent to a Location Routing Problem with Het-
erogeneous vehicles (LRP-HV) that identifies the optimal location of satellites and the routes from these
satellites simultaneously. The first echelon problem can be considered equivalent to a Multi Depot Split
Deliveries Capacitated Vehicle Routing Problem with Heterogeneous vehicles (MDSDCVRP-HV). Even
though the number of satellites (“customers”) is less, the presence of multiple depots, split-deliveries, and
heterogeneous vehicles motivated the use ALNS in this case as well.

Algorithm 1 illustrates the present implementation of the algorithm. It starts with preprocessing of
the inputs required for cost calculation and then we obtain an initial solution for both the echelons. We
apply removal operators that are selected using the roulette wheel selection process on the initial solution.
These operators remove p number of customers from the present solution and keep them in the customer
pool, which are later used in the Insertion stage. We follow the hierarchical structure of removal operators
developed by Hemmelmayr et al. (2012) in this study. The first level removal operators will have a small
impact on the first echelon problem as the number of open/closed satellites remains the same. Whereas,
the second level removal operators have a high impact on the first echelon solution because these operators
can open or close any satellite. Second level operators will be called only if there is no improvement for N
number of iterations. We use the record-to-record acceptance criteria, which accepts a new solution if the
objective function value is no worse than α % of the current solution or if the obtained solution is from a
second level operator. We do not restrict the search space of the algorithm to the space of feasible solutions;
the algorithm is allowed to violate the maximum number of available vehicles, vehicle capacity, and capacity
at satellites constraints while imposing a heavy penalty to eliminate these violations.

4.2. Initial solution

We obtain an initial solution for the second echelon by solving a bin-packing problem, and we use a greedy
algorithm for the first echelon. The advantage of solving as a bin-packing problem over other better-known
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Algorithm 1 Adaptive Large Neighborhood Search

1: Read input data, initialize weights and scores
2: Generate an initial solution using bin packing approach (S)
3: Make initial solution as best solution S∗ ← S
4: j = 0
5: for i← 0,MaxIterations do
6: if j = N then
7: Call high impact Removal operator (Sip)
8: else
9: Call low impact Removal operator (Sip)

10: end if
11: Call Insertion operator (Si)
12: if Sd in PSD list then
13: the first echelon solution is retrieved from memory
14: else
15: ALNS is called to get the solution for the first echelon
16: end if
17: if Si ≤ (1+α)S then
18: S ← Si
19: j ← 0 and update score
20: else if j = N then
21: S ← Si
22: j ← 0 and update score
23: else
24: j += 1
25: end if
26: if S < S∗ then
27: S∗ ← S
28: end if
29: if i % Q = 0 then
30: Update weights based on scores
31: end if
32: end for

Note: N - Number of iterations allowed without improvement; Sd - satellite demand configuration;
PSD - list of unique satellite demand configurations found till now; α - is Record-to-Record acceptance factor; Q - Weights update
interval

algorithms such as Sweep algorithm (Renaud and Boctor, 2002) or Clarke and Wright savings algorithm
(Clarke and Wright, 1964) is it minimizes the number of vehicles required as well. A limitation of ALNS
implementations in previous studies (Hemmelmayr et al., 2012) is it cannot minimize the number of vehicles
required. Also, for ALNS, the solution feasibility is more important than the quality of the initial solution.

Best fit allocation based bin packing approach is used to find the node allocation list with a minimum
number of vehicles. Each of these vehicles is then randomly allotted such that there will be at least one
vehicle used for each satellite. This procedure of having at least one vehicle at each of these satellites will
make sure that no satellite is left out in the initial solution. We remove satellites that are found to be
expensive in terms of distance or fuel consumed in the later stages of ALNS.

An initial solution for the first echelon is found using a greedy algorithm that uses a cluster-first route-
second approach. Clusters of satellites are formed using the same bin packing approach used before, but
the bin size here is the total capacity of all the available vehicles at that depot. For routing the satellites
are linked until vehicle capacity is reached, and if required, we split demand between vehicles.
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4.3. Removal operators

The present paper uses four low impact removal operators (random removal, worst removal, related
removal, and route removal) and three high impact removal operators (satellite closing, satellite opening,
and satellite swap), which were introduced in Ropke and Pisinger (2006) and Hemmelmayr et al. (2012).
These operators destroy the solution by removing p (min([0.4 × total customers, 60])) customers from the
solution and add them to the customer pool. We present a detailed description of these operators below.
Random Removal
This operator removes the p customers randomly for all the routes and adds them to the customer pool.
Worst Removal
This operator removes the p customers who have the highest removal gains. Removal gain is the difference
in the cost with and without the customer in the solution. Subsequently, we normalize the removal gains by
dividing it with the average cost of all the incoming edges to the corresponding node. The normalization is
done to avoid repeatedly choosing far away customers. Further, to randomize the search, the removal gains
are multiplied by a random factor d ∈ [0.8, 1.2].
Related Removal
This operator first selects a seed customer randomly from the list of all the available customers and removes
it from the present route and adds to the customer pool. Remaining p-1 customers, which are closest to
the seed customer are removed from their present routes and stored in the customer pool.
Route Removal
This operator selects a random route from the available routes and all the customers in that route are
removed and stored in the customer pool.
Satellite Opening
This operator randomly opens a satellite from the list of closed satellites. Then, p closest customers to the
newly opened satellite are removed from their existing routes and stored in the customer pool.
Satellite Closing
This operator randomly closes a satellite from the list of open satellites. Then all the customers connected to
the newly closed satellite are added to the customer pool. If the removed satellite is the only open satellite,
a new satellite is opened to avoid closing all the satellites.
Satellite Swap
This operator is similar to the satellite closing operator. However, here a new satellite is opened every time
based on a roulette wheel selection. The probability used in roulette wheel selection is inversely proportional
to the distance from the satellite being closed. This helps in swapping the satellites, which are closer and
does not change the solution drastically.

4.4. Insertion operators

These operators insert the customers from the customer pool into any of the existing routes or new
routes.
Greedy Insertion
We calculate the insertion cost (lowest increase in cost by inserting the customer in any route) for all the
customers in the customer pool. A random customer from the customer pool is selected and inserted at
the lowest insertion cost position possible, and we recalculate insertion costs for the remaining customers.
This operation can also insert customers by opening a new route. The new route cannot be the one that is
removed by random route removal in the present iteration.
Greedy Insertion Perturbation
This operator is same as the Greedy Insertion operator with the only difference being the insertion costs are
perturbed by a random factor d ∈ [0.8, 1.2] to introduce randomness in the search.
Regret k-Insertion
Regret cost, the cost difference between the best insertion cost and the kth best insertion cost, is calculated
for all the customers in the customer pool. We treat the customers in the order of their regret cost. This
operator uses look-ahead information (till kth position), thus preventing situations where a customer has
to inserted in an inferior position due to unavailability of better positions. Upon inserting a customer at a
position, we recompute the regret costs for the remaining unplaced customers.
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4.5. Adaptive weights

We divide total iterations into m segments of 50 consecutive iterations. Weights of the operators are
updated based on the scores obtained at the end of every segment. Set the scores to zero at the start of every
segment, and then increment by a value in every iteration based on the performance of operators. Scores
are incremented based on the following procedure: 50 is added to the score if the incumbent solution is a
new global best solution; 20 if it is a new improving solution; 10 if it is an accepted deteriorating solution;
otherwise, the score remains unchanged. The average score at the end of each segment is used to update
the weight of the corresponding operator. We select the operators by a roulette wheel mechanism in each
iteration. The selection probability of operator i is pi = wi/

∑
i∈OP wi, where OP is the set of removal or

insertion operators and wi stands for the weight of the operator i.

4.6. First echelon solution

Location and demands of the satellites will be known only after solving the second echelon problem.
Identification of open satellites and their respective demand transforms the first echelon problem to an
equivalent multi-depot split-delivery routing problem with heterogeneous vehicles. This problem is also
solved using ALNS because of the presence of multiple depots, split delivery, and heterogeneous fleets. For
every new satellite location and demand configuration, we apply ALNS and store the results. Whenever we
encounter a similar satellite location and demand configuration, we retrieve the result from memory.

5. Computational Tests

In this section, we evaluate the computational efficiency and solution quality of the model in different
instances. The MILP model is coded in GAMS 23.9 and solved using Gurobi 6.9 solver hosted on NEOS
server (Czyzyk et al., 1998; Dolan, 2001; Gropp and Moré, 1997). We ran all the instances on neo-server-3
or neo-server-5 that had a configuration of Intel Xeon E5-2430 @ 2.2GHz with 3 GB RAM (actual RAM is
64 GB, but there is a 3 GB limit for each job). The ALNS algorithm is coded in Python and tested on a PC
with 2.2-GHz Xeon processor with 8 GB of RAM. Parameters used in the study are described in section 5.1
followed by driving cycle data in section 5.2, instances description in section 5.3, and finally, computational
results in section 5.4.

5.1. Parameters

Table 1 (adopted from Demir et al. (2011)) shows description and values of the parameters mentioned in
section 3.2, and Table 2 provides vehicle specific values of different trucks utilized in the test instance (light
trucks - Demir et al. (2011),medium truck - Force (2018) , medium heavy truck - Eicher (2018) , heavy truck
- TATA (2018)).

5.2. Driving cycle data

The driving cycles used in the study are standard US EPA driving cycles (USEPA (2017), see Figures 3
and 4) and the Table 3 shows the driving cycle parameters. We repeat the same driving cycle, and truncate
the last driving cycle such that it exactly spans the length of the link. The average speed for each link is
obtained by averaging the speeds from the driving cycle fitted to a link.

To increase the accuracy of fuel consumption estimation, specialized driving cycles that depend on the
link type and congestion level at different times of day are required. Such driving cycles, if available, can be
incorporated into the preprocessing stage of the proposed model.
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Table 1: Description of parameters used in CMEM

Parameter Description Value used

v Speed in m/s Driving cycle
a Acceleration in m/s2 Driving cycle
N Engine speed approx. from speed
M Gross vehicle weight in kg Twice the vehicle capacity
g Gravitational constant m/s2 9.81
θ Road grade angle in degrees 0
ρ Air density in kg/m3 1.2041
ε Vehicle drive train efficiency 0.4
ϕ Fuel-to-air mass ratio 0.0667
k Engine friction factor 0.2
η Efficiency for diesel engines 0.45
U Lower heating value for the fuel in MJ/kg 44 for diesel
A Frontal surface area in m2 See table 2
Cd Coefficient of aerodynamic drag See table 2
Cr Coefficient of rolling resistance See table 2
V Engine displacement in liters See table 2

Table 2: Vehicle specific parameters

Vehicle type A Cd Cr V Idle rpm Governing rpm

Light truck 2.25 0.57 0.01 0.7 800 3600
Medium truck 2.51 0.6 0.045 2.1 700 2800
Medium heavy truck 2.81 0.8 0.045 3.7 600 2600
Heavy truck 3.341 0.9 0.07 5.83 540 2400

5.3. Instance sets

We test the model on 2E-CVRP instances introduced by Perboli et al. (2011) (set-2, set-3, and set-4),
modified instances (37 to 54) from set-4 with an extra depot, and 32 new instances introduced for MD2E-
FMRP. Both set-2 and set-3 instances have 22 or 33 customers with two satellites and a central depot,
whereas set-4 is a more extensive network with a central depot, two to five satellites, and 50 customers.
The main difference between set-2 and set-3 is the location of satellites and the central depot. The new
instances mimic reality with depot location selected randomly along the outer boundary in a space enclosed
by a 30 km × 30 km region excluding the central 25 km × 25 km region. Customers and satellites are
selected randomly in the central 25 km × 25 km region. The first echelon has two vehicle types: a heavy
vehicle (6 ton) and a medium-heavy vehicle (3 ton). In the second echelon, a light vehicle (1.5 ton) and a
medium vehicle (2 ton) are available. The number of vehicles available at each depot and satellite can be
different. Hence, there can a be a mix of heavy and medium-heavy vehicles at each depot, and light and
medium vehicles at each satellite. We use the US EPA driving cycle for heavy-duty vehicles for the first
echelon vehicles and light-duty vehicle driving cycle for the second echelon vehicles.

5.4. Computational results

New instances are solved based on the proposed formulation (6a)-(27) and the instances in literature
are solved based on the constraints (7)-(27) with distance minimization objective. Distance minimization is
considered to show the savings in distance because of the relaxation (constraints (8) and (17)) that vehicles
can end at any depot/satellite.

All the instances are run using Gurobi with a time limit of 10,000 s. We solve all instances with 22
customers to optimality, and the instances with 33 customers had an average gap of less than 1% compared
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Figure 3: USEPA urban driving cycle for heavy duty vehicles
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Figure 4: USEPA urban driving cycle for light duty vehicles

to the best bound (obtained by Gurobi after linear relaxation). We test the present model with set-2 and
set-3 instances with the restriction that every vehicle has to come back to the same satellite. Tables 4 and
5 and show that Gurobi can find the optimal solution in 14 out of 21 instances and two more solutions are
the same as the Best Known Solution (BKS) (Perboli et al., 2011; Hemmelmayr et al., 2012). Similarly,
in set-3 Gurobi found the optimal solutions in 9 out of 18 instances, one solution is better than BKS, and
three are the same as BKS. In the case with relaxation that vehicles can end at any depot (satellite) and
yet conserve vehicles at each depot (satellite), there is an additional distance saving in 11 instances of set-2
and 14 instances of set-3. Distance reduction is up to 8.06% and 7.69% with an average of 1.13% and 1.3%
for set-2 and set-3 respectively. Optimal values in the results are in bold font.
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Table 3: Driving Cycle (DC) parameters

Parameter Light duty DC Heavy duty DC
Average speed (m/s) 8.75 8.42
Average running speed (m/s) 10.79 12.62
Average acceleration (m/s2) 0.50 0.48
Average deceleration (m/s2) 0.58 0.58
Root mean square acceleration (m/s2 ) 0.63 0.47
Percentage of time in acceleration mode 39.71 27.05
Percentage of time in deceleration mode 34.67 22.62
Percentage of time in idling & creeping mode 25.62 50.33
Percentage of time in cruising mode 0.00 0.00

Table 4: Results of set-2 instances

Instances
Literature Present model

BKS (i)
(Same depot)

Same depot (ii)
% dev
between (i)
and (ii)

Different depot (iii)
% dev
between (ii)
and (iii)

E22-K4-S06-17 417.07 417.07 0.00 416.85 -0.05
E22-K4-S08-14 384.96 384.96 0.00 384.96 0.00
E22-K4-S09-19 470.60 470.60 0.00 445.01 -5.44
E22-K4-S10-14 371.50 371.50 0.00 366.90 -1.24
E22-K4-S11-12 427.22 427.22 0.00 418.41 -2.06
E22-K4-S12-16 392.78 392.78 0.00 377.23 -3.96
E33-K4-S01-09 730.16 730.16 0.00 727.64 -0.35
E33-K4-S02-13 714.64 714.63 0.00 712.12 -0.35
E33-K4-S03-17 707.49 707.48 0.00 706.23 -0.18
E33-K4-S04-05 778.74 801.04 2.78 801.04 0.00
E33-K4-S07-25 756.85 756.84 0.00 741.15 -2.07
E33-K4-S14-22 779.05 779.05 0.00 779.05 0.00
E51-K5-S02-17 597.49 597.49 0.00 597.43 -0.01
E51-K5-S04-46 530.76 530.76 0.00 530.76 0.00
E51-K5-S06-12 554.80 627.09 11.53 576.58 -8.06
E51-K5-S11-19 581.64 581.64 0.00 581.64 0.00
E51-K5-S27-47 538.22 538.22 0.00 538.22 0.00
E51-K5-S32-37 552.28 552.28 0.00 552.28 0.00
E51-K5-S02-04-17-46 530.76 572.69 7.32 572.69 0.00
E51-K5-S06-12-32-37 531.92 622.28 14.52 622.28 0.00
E51-K5-S11-19-27-47 531.12 610.39 12.99 610.39 0.00
Average 565.72 580.29 2.34 574.23 -1.13

Table 6 summarizes the results for new instances. Only the first two instances are solved to optimality
using Gurobi within the time limit of 10,000 s and the remaining results reported are sub-optimal solutions
obtained at the end of the time limit. Results are compared for these two cases, i.e., with and without the
relaxation to return to any depot (satellite). Results show that the relaxation resulted in savings of fuel up
to 4.51% with an average savings of 1.97%. In the case of distance minimization, there is a reduction in the
distance up to 11.66% with an average reduction of 3.05%.
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Table 5: Results of set-3 instances

Instances
Literature Present model

BKS (i)
(Same depot)

Same depot (ii)
% dev
between (i)
and (ii)

Different depot (iii)
% dev
between (ii)
and (iii)

E22-K4-S13-14 526.15 526.15 0.00 519.20 -1.32
E22-K4-S13-16 521.09 521.09 0.00 515.11 -1.15
E22-K4-S13-17 496.38 496.38 0.00 495.72 -0.13
E22-K4-S14-19 498.81 498.81 0.00 484.56 -2.86
E22-K4-S17-19 512.80 512.80 0.00 501.48 -2.21
E22-K4-S19-21 520.41 520.41 0.00 513.87 -1.26
E33-K4-S16-22 672.17 672.17 0.00 660.16 -1.79
E33-K4-S16-24 666.02 666.02 0.00 664.46 -0.23
E33-K4-S19-26 680.36 680.36 0.00 668.97 -1.67
E33-K4-S22-26 680.89 680.36 -0.08 678.82 -0.23
E33-K4-S24-28 670.43 670.43 0.00 668.25 -0.32
E33-K4-S25-28 650.58 650.58 0.00 643.95 -1.02
E51-K5-S12-18 692.37 705.32 1.84 705.32 0.00
E51-K5-S12-41 691.37 805.89 14.21 805.89 0.00
E51-K5-S12-43 712.48 712.48 0.00 712.48 0.00
E51-K5-S39-41 729.94 799.11 8.66 785.52 -1.70
E51-K5-S40-41 729.94 857.00 14.83 791.139 -7.69
E51-K5-S40-43 757.30 805.77 6.02 805.77 0.00
Average 630.27 650.73 2.52 641.97 -1.30

Table 6: Results for new instances

Instances
Fuel minimization Distance minimization

Different depot Same depot % dev Different depot Same depot % dev

C16-S4-D2 28.40 28.41 -0.05 136.513 137.542 -0.75
C18-S4-D2 37.95 39.00 -2.68 175.690 180.127 -2.46
C24-S6-D2 51.56 54.00 -4.51 220.615 227.032 -2.83
C28-S5-D2 49.60 50.35 -1.50 226.285 256.149 -11.66
C28-S6-D3 47.36 48.73 -2.82 210.787 211.426 -0.30
C30-S3-D1 60.22 59.43 -0.83 275.610 276.190 -0.21
C30-S6-D3 54.88 56.03 -2.05 265.817 278.515 -4.56
C36-S4-D2 62.37 63.21 1-.32 277.699 282.215 -1.60
Average 49.04 49.91 -1.97 223.627 231.149 -3.05

Table 7 summarizes the results for modified set-4 instances. We solve these instances with the relaxation
that vehicles can end at different depots. In these instances, Gurobi is not able to find optimal solutions
within the time limit of 10,000 s. Hence, we make a comparison between the integer solutions (BKS) and
linear relaxed solutions (best bound) obtained at the end of this period. We mark the cases where Gurobi is
unable to find any feasible solution within the time limit or ran out of memory with a “ * ”. These results
are only used to compare the performance of ALNS on medium-sized instances.
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Table 7: Results for modified set-4 instances

Instances
Fuel minimization Distance minimization

BKS Best bound % dev BKS Best bound % dev

Instance 50-37 * 1634.79 794.95 51.37
Instance-50-38 21.62 15.16 29.88 1505.78 672.35 55.35
Instance-50-39 26.33 19.64 25.41 1423.04 871.91 38.73
Instance-50-40 20.20 13.7 32.18 1478.26 617.16 58.25
Instance-50-41 33.27 25.2 24.26 1727.80 956.68 44.63
Instance-50-42 24.74 20.74 16.17 1202.45 723.66 39.82
Instance-50-43 24.17 21.14 12.54 1291.52 719.11 44.32
Instance-50-44 19.94 16.14 19.06 1189.69 548.01 53.94
Instance-50-45 25.95 18.73 27.82 1301.60 724.43 44.34
Instance-50-46 18.79 14.27 24.06 942.37 535.58 43.17
Instance-50-47 30.28 25.4 16.12 1322.50 830.82 37.18
Instance-50-48 21.45 17.34 19.15 *
Instance-50-49 28.42 19.89 30.01 1324.65 732.19 44.73
Instance-50-50 20.35 13.65 32.92 1002.58 579.21 42.23
Instance-50-51 24.94 18.39 26.26 1156.92 728.54 37.03
Instance-50-52 27.45 13.55 50.64 1096.80 567.25 48.28
Instance-50-53 37.90 19.91 47.47 1414.12 785.59 44.45
Instance-50-54 21.50 15.31 28.79 1008.57 619.24 38.60
Average 25.14 18.13 27.22 1295.50 706.28 45.08

Table 8 summarizes the results of fuel minimization and distance minimization objectives. There is an
average saving of 13.11% in fuel consumption even with an average increase of 15.11% in distance traveled
while minimizing fuel consumed. The use of a heterogeneous fleet is a likely reason for the significant
reduction in fuel consumption and an increase in distance. With the fuel minimization objective, the model
utilizes all the available fuel-efficient trucks whereas in distance minimization case, the model uses large
trucks as their capacity is more. Hence, minimizing distance does not always reduce fuel consumption since
the load on the vehicle and type of vehicle significantly impact fuel consumption.

Table 8: Comparison of distance minimization and fuel minimization objectives

Instances
Fuel minimization Distance minimization Distance

savings
(%)(iv-ii)

Fuel
savings
(%)(iii-i)Fuel cost (i)

Distance cost
(ii)

Fuel cost (iii)
Distance cost
(iv)

C16-S4-D2 28.40 160.033 40.71 136.513 -14.70 30.21
C18-S4-D2 37.95 229.496 51.54 175.690 -23.45 24.33
C24-S6-D2 51.56 264.016 56.65 220.615 -16.44 4.68
C28-S5-D2 49.60 265.322 57.78 226.285 -14.71 12.60
C28-S6-D3 47.36 275.257 58.53 210.787 -23.42 16.74
C30-S3-D1 60.22 293.854 62.31 275.610 -6.21 4.62
C30-S6-D3 54.88 296.436 61.68 265.817 -10.33 9.16
C36-S4-D2 62.37 314.299 64.87 277.699 -11.64 2.56

Average 49.04 262.340 56.76 223.627 -15.11 13.11
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Figure 5: Effect of variation in heterogeneous fleet on solution

Figure 5 shows the variation in fuel cost with different in heterogeneous fleet composition. We compare
five cases each with a different mix of trucks. The first two cases have homogeneous fleets of either small
trucks (all small) or large trucks (all large) in each echelon. The next three cases have heterogeneous fleets in
each echelon; equal capacities case has the mix of trucks such that the total capacity of all the available large
trucks is equal to that of smaller trucks; ’small-dominated’ (’large-dominated’) case has more small (large)
trucks (i.e., total capacities of all small trucks is more than that of large trucks). Having heterogeneous
fleets results in lower fuel consumption than homogeneous fleets. Among the heterogeneous cases, operating
excess of smaller trucks results in the best fuel economy. We attribute these variations in homogeneous and
heterogeneous cases to the reduction in empty and less than truckload trips.

Figure 6 shows the optimal routes for the instance C16-S4-D2 in all five cases. In these figures, we
represent customers as circles, satellites as squares, and depots as triangles. We draw routes from depot and
satellite with different line types based on the vehicle type used. The bottom two plots show the optimal
routes obtained for the homogeneous fleet cases (all small vehicles and all large vehicles) and the cases
with the heterogeneous fleet are shown in the top three figures. From these figures, we observe that small
dominated case (refer the third plot in top row) uses a better mix of available vehicles.

19



All large All small

Equal capacities Large dominated Small dominated

5000 10000 15000 20000 5000 10000 15000 20000

5000 10000 15000 20000

5000

10000

15000

20000

25000

5000

10000

15000

20000

25000

x

y

Vehicle type
Heavy
Light
Medium
Medium−heavy

Node type
Customer
Depot
Satellite

Figure 6: Optimal routes for Heterogeneous case

To validate the implemented ALNS, we compare with the results of Gurobi for the instance set-2 and
set-3 with the relaxation that vehicles can end at any depot. ALNS algorithm can find solutions that are the
same if not better than the model in most cases and took an average time of 223 and 204 seconds for set-2
and set-3 respectively (Table 9). Gurobi is not able to find optimal solutions for set-4 instances within the
time-limit of 10,000s. Hence, the set-4 instances results are used to compare the performance of ALNS. The
results (Table 10) show that ALNS produced superior results compared to Gurobi in significantly less time
and overall ALNS can find solutions that are better than Gurobi in 57 cases, and in 23 cases the results are
same as the one found by Gurobi. ALNS on set-4 instances (refer Table 11) is run imposing the constraint
on vehicles to return to the same depot to evaluate its performance. It found new solutions in four cases and
the same solutions as previous best solutions in eight other cases. The average gap for 54 instances is 0.73%
and runtime is 771s. The ALNS results reported here are after 200,000 iterations, whereas the best-known
solutions reported in the literature were for 500,000 iterations. All the results reported for ALNS are the
best out of three runs and the corresponding time.
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Table 9: ALNS results compared to Gurobi on set-2 and set-3 Instances

Instances Gurobi ALNS % dev ALNS Instances Gurobi ALNS % dev ALNS
Time (s) Time (s)

Set-2 Set-3
E22-K4-S06-17 416.85 416.85 0.00 103 E22-K4-S13-14 519.20 519.20 0.00 125
E22-K4-S08-14 384.96 384.96 0.00 130 E22-K4-S13-16 515.11 515.11 0.00 168
E22-K4-S09-19 445.01 445.01 0.00 109 E22-K4-S13-17 495.72 495.72 0.00 118
E22-K4-S10-14 366.90 366.90 0.00 190 E22-K4-S14-19 484.56 484.56 0.00 148
E22-K4-S11-12 418.41 418.41 0.00 130 E22-K4-S17-19 501.48 501.48 0.00 137
E22-K4-S12-16 377.23 377.23 0.00 104 E22-K4-S19-21 513.87 513.87 0.00 260
E33-K4-S01-09 727.64 727.64 0.00 167 E33-K4-S16-22 660.16 650.81 -1.42 155
E33-K4-S02-13 712.12 712.12 0.00 222 E33-K4-S16-24 664.46 654.09 -1.56 272
E33-K4-S03-17 706.23 695.81 -1.48 166 E33-K4-S19-26 668.97 668.98 0.00 172
E33-K4-S04-05 801.04 778.74 -2.78 228 E33-K4-S22-26 678.82 678.82 0.00 278
E33-K4-S07-25 741.15 741.15 0.00 167 E33-K4-S24-28 668.25 672.03 0.56 295
E33-K4-S14-22 779.05 779.05 0.00 166 E33-K4-S25-28 643.95 643.95 0.00 193
E51-K5-S02-17 597.43 597.43 0.00 656 E51-K5-S12-18 705.32 710.97 0.80 709
E51-K5-S04-46 530.76 531.77 0.19 737 E51-K5-S12-41 805.89 703.44 -12.71 894
E51-K5-S06-12 576.58 564.46 -2.10 727 E51-K5-S12-43 715.02 716.65 0.23 812
E51-K5-S11-19 581.64 585.83 0.72 665 E51-K5-S39-41 785.52 766.56 -2.41 689
E51-K5-S27-47 538.22 538.22 0.00 800 E51-K5-S40-41 791.14 791.14 0.00 716
E51-K5-S32-37 552.28 552.28 0.00 794 E51-K5-S40-43 805.77 850.26 5.23 863
E51-K5-S02-04-17-46 572.69 530.76 -7.32 864
E51-K5-S06-12-32-37 622.28 564.99 -9.21 659
E51-K5-S11-19-27-47 610.39 550.01 -9.89 806
Average 574.23 564.74 -1.52 409 645.73 640.98 -0.63 389

Table 10: ALNS results compared to Gurobi on Set-4 instance

Instances Gurobi ALNS % dev Time (s) Instances Gurobi ALNS % dev Time (s)

Instance 50-1 1617 1582 -2.18 476 Instance 50-28 1228 1216 -0.94 725
Instance 50-2 1499 1442 -3.81 597 Instance 50-29 1621 1569 -3.22 562
Instance 50-3 1625 1580 -2.75 966 Instance 50-30 1219 1218 -0.13 858
Instance 50-4 1461 1433 -1.89 1166 Instance 50-31 1677 1454 -13.29 758
Instance 50-5 2510 2194 -12.59 446 Instance 50-32 1194 1206 0.96 520
Instance 50-6 1314 1280 -2.57 564 Instance 50-33 1639 1517 -7.43 1149
Instance 50-7 1483 1438 -3.08 583 Instance 50-34 1245 1233 -0.93 654
Instance 50-8 1368 1366 -0.15 1141 Instance 50-35 1686 1598 -5.23 950
Instance 50-9 1451 1458 0.45 498 Instance 50-36 1226 1241 1.17 995
Instance 50-10 1361 1361 0.03 845 Instance 50-37 1844 1543 -16.32 710
Instance 50-11 2220 2070 -6.77 410 Instance 50-38 1303 1173 -9.99 891
Instance 50-12 1217 1209 -0.66 659 Instance 50-39 2997 1535 -48.77 995
Instance 50-13 1495 1478 -1.13 788 Instance 50-40 1224 1179 -3.65 440
Instance 50-14 1422 1411 -0.78 1029 Instance 50-41 2340 1694 -27.63 870
Instance 50-15 1422 1476 3.65 995 Instance 50-42 1260 1194 -5.24 863
Instance 50-16 1401 1391 -0.70 706 Instance 50-43 1576 1422 -9.76 520
Instance 50-17 2206 2117 -4.05 1039 Instance 50-44 1082 1039 -3.98 883
Instance 50-18 1314 1228 -6.56 1184 Instance 50-45 1711 1455 -14.95 1180
Instance 50-19 1900 1571 -17.30 536 Instance 50-46 1166 1068 -8.42 870
Instance 50-20 1412 1279 -9.42 512 Instance 50-47 1676 1590 -5.14 1120
Instance 50-21 1649 1581 -4.10 630 Instance 50-48 1109 1074 -3.19 1051
Instance 50-22 1324 1289 -2.67 438 Instance 50-49 1916 1442 -24.74 624
Instance 50-23 1986 1681 -15.35 1147 Instance 50-50 1234 1074 -12.98 499
Instance 50-24 1291 1285 -0.53 1051 Instance 50-51 1286 1405 8.48 800
Instance 50-25 1455 1436 -1.29 621 Instance 50-52 2563 1109 -56.74 447
Instance 50-26 1165 1167 0.18 700 Instance 50-53 - 1552 424
Instance 50-27 1722 1483 -13.87 1014 Instance 50-54 1160 1129 -2.69 516
Average 1556.13 1411.38 -7.26 771
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Table 11: ALNS results compared to Gurobi on Set-4 instances with vehicle ending at same depot

Instances BKS ALNS % dev Time (s)

Instance 50-5 2194 2194 0.00 446
Instance 50-6 1280 1280 0.00 564
Instance 50-7 1459 1438 -1.44 583
Instance 50-10 1361 1361 0.00 845
Instance 50-12 1209 1209 0.00 659
Instance 50-13 1482 1478 -0.27 788
Instance 50-15 1490 1476 -0.94 995
Instance 50-18 1228 1228 0.00 1184
Instance 50-25 1440 1436 -0.30 621
Instance 50-26 1167 1167 0.00 700
Instance 50-34 1233 1233 0.00 654
Instance 50-48 1074 1074 0.00 1051

Table 12 shows the performance of ALNS in both fuel minimization and distance minimization cases on
the modified set-4 instances. ALNS performs exceptionally well in all these instances. In fuel minimization
case it found nine new solutions, eight same as Gurobi and only one poorer solution. In the distance
minimization case it found new solutions in all 18 out of 18 instances. The average time taken is 893 and
817 seconds for fuel and distance minimization cases respectively.

Table 12: ALNS on modified set-4 instances

Instances
Fuel Minimization Distance Minimization

Gurobi ALNS % dev Time (s) Gurobi ALNS % dev Time (s)

Instance 50-37-2 * 29.86 * 1248 1634.79 1063.22 -34.96 849
Instance 50-38-2 21.62 21.62 0.00 731 1505.78 1038.96 -31.00 1038
Instance 50-39-2 26.33 26.33 0.00 1163 1423.04 1106.84 -22.22 1241
Instance 50-40-2 20.20 20.20 0.00 675 1478.26 967.54 -34.55 1024
Instance 50-41-2 33.27 28.11 -15.52 924 1727.80 1224.89 -29.11 1014
Instance 50-42-2 24.74 24.56 -0.73 748 1202.45 1095.36 -8.91 735
Instance 50-43-2 24.17 24.17 0.00 1247 1291.52 983.96 -23.81 669
Instance 50-44-2 19.94 19.49 -2.27 1066 1189.69 983.75 -17.31 1070
Instance 50-45-2 25.95 25.95 0.00 704 1301.60 1018.41 -21.76 735
Instance 50-46-2 18.79 16.84 -10.38 734 942.37 899.91 -4.51 1037
Instance 50-47-2 30.28 26.63 -12.06 977 1322.50 1104.75 -16.47 478
Instance 50-48-2 21.45 21.56 0.51 771 * 952.81 * 744
Instance 50-49-2 28.42 28.42 0.00 619 1324.65 945.8 -28.60 623
Instance 50-50-2 20.35 20.35 0.00 1146 1002.58 890.03 -11.23 599
Instance 50-51-2 24.94 24.75 -0.74 871 1156.92 1036.41 -10.42 833
Instance 50-52-2 27.45 26.97 -1.75 747 1096.80 908.7 -17.15 667
Instance 50-53-2 37.90 32.94 -13.10 728 1414.12 979.03 -30.77 710
Instance 50-54-2 21.50 21.50 0.00 988 1008.57 961.91 -4.63 643
Average 25.14 24.46 -3.30 893.72 1295.50 1009.02 -20.43 817.17

22



In the case of newly introduced instances, Gurobi can find optimal solutions only for cases C16-S4-D2
and C18-S4-D2. In these instances, ALNS can find solutions that are better in 7 out of 16 instances and the
same as the previous in 4 cases. The average improvement is 3.9% in fuel minimization case and -0.19% in
distance minimization case (Table 13).

Table 13: ALNS on new instances

Instances
Fuel minimization Distance minimization

Gurobi ALNS % dev Time (s) Gurobi ALNS % dev Time (s)

C16-S4-D2 28.4 28.40 0.00 233 136.51 136.51 0.00 227
C18-S4-D2 37.95 37.95 0.00 254 175.69 180.13 2.46 278
C24-S6-D2 51.57 48.58 -6.15 342 220.62 225.34 2.09 385
C28-S5-D2 49.6 50.09 0.98 1161 226.29 226.29 0.00 963
C28-S6-D3 47.36 44.72 -5.91 729 210.79 218.62 3.58 542
C30-S3-D1 58.94 56.77 -3.83 502 275.61 278.20 0.93 429
C30-S6-D3 54.89 51.78 -6.01 1023 265.82 251.26 -5.80 989
C36-S4-D2 62.38 56.21 -10.98 604 277.70 272.82 -1.79 965
Average 48.88 46.81 -3.99 606 223.63 223.64 0.19 597

One of the main limitations of existing implementations of ALNS is it does not guarantee the minimum
number of vehicles. To overcome this limitation, the present study leveraged on the bin packing approach
for determining an initial solution. Bin packing approach gives the least number of vehicles required to
satisfy all the demand. However, restricting to the minimum number of vehicles may result in increased
fuel consumption or distance traveled. Table 14 shows the comparison of solutions obtained with (ALNS for
P-II) and without (ALNS for P-I) vehicle minimization as the secondary objective. Results show that ALNS
for P-II uses lesser vehicles compared to ALNS for P-I, but the fuel consumption and distance traveled are
slightly higher (2.71 % and 0.55% higher on average respectively).

Table 14: Comparison of two ALNS on new instances

Instances
Fuel minimization Distance minimization

ALNS
% dev

Vehicles used
% dev

ALNS
% dev

Vehicles used
% dev

P-I P-II P-I P-II P-I P-II P-I P-II
C16-S4-D2 28.4 28.4 0.00 10 9 10.00 136.51 136.51 0.00 10 9 10.00
C18-S4-D2 37.95 37.95 0.00 13 12 7.69 180.13 176.53 -2.04 12 12 0.00
C24-S6-D2 46.00 50.29 8.54 15 14 6.67 225.34 220.62 -2.14 15 13 13.33
C28-S5-D2 50.09 49.31 -1.58 15 15 0.00 226.29 229.45 1.38 15 15 0.00
C28-S6-D3 44.72 46.42 3.67 17 16 5.88 218.62 222.22 1.62 17 16 5.88
C30-S3-D1 56.77 59.23 4.16 16 16 0.00 278.20 272.45 -2.11 16 16 0.00
C30-S6-D3 51.78 54.17 4.42 18 18 0.00 251.26 267.43 6.05 18 18 0.00
C36-S4-D2 56.21 57.66 2.25 19 18 5.26 272.82 277.43 1.66 19 18 5.26
Average 46.49 47.93 2.71 15.37 14.75 4.44 223.65 225.33 0.55 15.25 14.62 4.31

6. Conclusion

This paper introduced a MILP formulation for Multi Depot Two-Echelon Fuel Minimizing Routing
Problem (MD2E-FMRP) with heterogeneous fleet at each echelon. The model allows for speed variations
in the comprehensive fuel estimation function, multiple depots, and heterogeneous fleets. We tested the
model on small- to medium-sized instances, and Gurobi was able to find optimal solutions in 49 instances
and an upper bound in 87 instances within a time limit of 10,000s. Results showed that optimizing for
fuel consumption instead of distance traveled saved 13.11% in fuel consumed even though distance traveled
increased by 15.11%. The present study also showed that heterogeneous fleets always saves more fuel when
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compared to homogeneous fleets. Allowing the vehicles to end at any depot (satellite) and simultaneously
conserving vehicle flow at every depot (satellite) reduces both the fuel consumed and the distance traveled.

An Adaptive Large Neighborhood Search (ALNS) heuristic was proposed and tested on existing Two-
Echelon Capacitated Vehicle Routing Problem (2E-CVRP) instances and newly introduced MD2E-FMRP
instances. ALNS was able to find solutions that are equal to or better than existing best-known solutions
for 86 out of 93 2E-CVRP instances and 29 out of 34 newly introduced MD2E-FMRP instances. ALNS
solutions, especially in the case of set-4 instances, were much better than the upper bound provided by
Gurobi even though the runtime was less than one-tenth of Gurobi. We also presented a slightly modified
version of ALNS with a secondary objective of minimizing the number of vehicles, and the results showed
that both original and modified heuristics have comparable performances. However, the modified heuristic
may be preferred if the operators are interested in minimizing the number of vehicles as well.

A possible extension of this paper is to formulate a problem that synchronizes both the first and second
echelon vehicles at the satellites. This extension is essential in case of perishable goods distribution or
the case with satellites having no storage facility. Use of electric vehicles may also be incorporated in the
formulation.
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Escúın, D., Millán, C., Larrodé, E., 2012. Modelization of Time-Dependent Urban Freight Problems by Using a Multiple
Number of Distribution Centers. Networks and Spatial Economics 12, 321–336.

Feliu, J. G., Perboli, G., Tadei, R., Vigo, D., 2007. The Two-echelon Capacitated Vehicle Routing Problem. Proceedings of the
22nd European Conference on Operational Research, Prague, 1–40.

Force, 2018. Technical specifications of FORCE TRUMP 40.
URL https://trucks.cardekho.com/en/trucks/force/trump-40/specifications

Franceschetti, A., Honhon, D., Van Woensel, T., Bektas, T., Laporte, G., 2013. The Time-dependent Pollution-Routing
Problem. Transportation Research Part B: Methodological 56, 265–293.
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