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Abstract

Electric vehicles are gaining popularity day-by-day aided by growing pollution concerns with fossil fuel
vehicles. Many logistics companies have already started testing electric vehicles for deliveries in cities.
However, electric vehicles have issues such as range anxiety and long recharge times. These issues have to be
considered in routing electric vehicles to avoid inefficient routes. One of the important factors that affects
the amount of battery consumed is load carried by the vehicle. Considering loads will significantly affect the
routes determined in the Electric Vehicle Routing Problem (EVRP). Most previous studies solved EVRP
with distance minimization as the objective. We have considered load of vehicle in the power estimation
function to calculate the energy requirement. An Adaptive Large Neighborhood Search (ALNS) with special
operators’ particular to this problem structure is presented. ALNS was tested on 56 benchmark instances
and it found better solutions for 14 instances and for 15 instances the solutions matched the best-known
solution.

Keywords: Electric vehicle routing, Energy minimization, Adaptive large neighborhood search

1. Introduction and Background

In recent times, many cities are facing severe air pollution which has been directly linked to the increase
in vehicular traffic. Urban freight transport has a disproportionately higher share in the overall pollution
from road transport in cities. To reduce the pollution caused by freight transport, many city logistics
companies have started testing and using electric vehicles for last-mile deliveries. However, electric vehicles
have issues such as range anxiety and long recharge times. These issues of electric vehicles pose challenges in
solving routing of electric vehicles when compared to fossil fuel based vehicles. Unlike in traditional routing
problems, the vehicles in Electric Vehicle Routing Problem (EVRP) need to visit recharge stations a number
of times in a day. Recharge times at the stations and location of recharge station affect final routes in the
solution, especially in cases with time window restrictions for delivery.

The structure of EVRP is similar to distance constrained vehicle routing problem Juan et al. (2014)
and variable-route vehicle-refueling problem Suzuki (2012), but the solution methods developed for the later
problems cannot be directly applied to EVRP. One of the first attempts to use electric vehicles in routing
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was by Conrad and Figliozzi (2011). They presented a problem having a fleet of electric vehicles with vehicle
capacity and time window constraints and considered that recharging can be done at particular customers’
location with a constant recharge time. Erdoğan and Miller-Hooks (2012) proposed a Green VRP that
considers routing of alternative fuel vehicles with limited fuel capacity and possibility to refuel along the
routes. Their model aims at minimizing distance traveled with the assumptions that fuel consumed is a
factor of distance traveled and refuel time is constant. Their model does not include vehicle capacity and
time window constraints. Erdoğan and Miller-Hooks (2012) introduced two heuristics: a modified Clarke
and Wright savings heuristic and density-based clustering heuristic which were tested on small to large
size instances. Later, Felipe et al. (2014) extended this problem to electric vehicles with partial recharges,
recharging stations with a different rate of recharge, and cost. However, they did not consider time windows
and vehicle capacities. They formulated a math programming model and developed a simulated annealing
based algorithm to solve EVRP. Schneider et al. (2014) introduced a variable neighborhood search algorithm
combined with Tabu search to solve the EVRP with Time Window (EVRPTW). In this, they generated
a new set of instances by modifying the well-known Solomon instances to have feasible time window after
introducing the recharge stations. The assumptions in their study are: a constant rate of recharge at the
recharge stations and fuel consumed is proportional to the distance traveled. Desaulniers et al. (2016)
extended the EVRPTW considering four different recharging strategies. They introduced a branch-price-
and-cut based exact algorithm to solve the problem. All the above studies except Felipe et al. (2014)
considered that vehicle gets fully recharged at the station. Keskin and Çatay (2016) allowed partial recharge
of vehicles with a restriction that vehicles leave depot with full charge and return with empty charge. They
have proposed a mixed integer linear programming model along with Adaptive Large Neighborhood Search
(ALNS) to solve the problem.

All the above studies minimized the distance traveled by electric vehicles instead of minimizing the energy
consumed and restrict the number of visits to a recharge station. It is particularly important to consider
energy minimization in case of electric vehicles since it ensures that battery is used effectively. The main
factors which influence the battery are load, speed, and grade. Earlier studies considered that the amount of
battery discharged is either fixed or proportional to the distance traveled, ignoring these important factors.
Our study overcomes this issue considering a comprehensive power estimation function that includes all
three factors to estimate the power discharged. Also, we introduce an Adaptive Large Neighborhood Search
(ALNS) algorithm with new operators that are effective in solving the EVRPTW.

2. Methodology

2.1. Estimation of power required

In the present study, power module from the Comprehensive Modal Emission Model (CMEM) Barth
et al. (2004) is used to estimate the required power. This model is selected particularly because it takes
into account all the important parameters such as speed, acceleration, load, and grade. Engine Power (Pe)
requirement is calculated using:

Pe =
(Ma+Mg sin θ +MgCr cos θ + 0.5CdρAv

2)v

1000ε
, (1)

where v is the speed (m/s), a is acceleration (m/s2), M is the gross vehicle weight (kg), g is the gravitational
constant (m/s2), θ is the road grade angle in degrees, ρ is the air density (kg/m3, typically 1.2041), A is the
frontal surface area (m2), Cd is the coefficient of aerodynamic drag, Cr the coefficient of rolling resistance,
ε is the vehicle drive train efficiency (typically 0.8), Pe is the second-by-second engine power output (kW ).
The present study considers that all vehicles travel at a fixed speed and on a level ground. Upon substituting
these values, equation (1) reduces to equation (2):

Pe =
(MgCr + 0.5CdρAv

2)v

1000ε
, (2)
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Equation (2) is rewritten as a linear model of load in equation (3):

Pe = α+ βM (3)

Where,

α =
0.5CdρAv

3

1000ε
is a constant and

β =
gCrv

1000ε
is the coefficient of weight, M.

2.2. Problem Description

In EVRPTW, the vehicles have to deliver goods to the customers within the specified time window. In
case a vehicle arrives before the start time of time window, then the vehicle waits until the start time and
delivers the goods. No vehicle is allowed to visit a customer after the due time. These vehicles can visit a
recharge station en route and replenish their battery. The recharge time at the station is a linear function
of charge depleted. Each customer can be visited only once by any vehicle. The objective is to minimize
the total energy required.

2.3. Mathematical formulation

The present EVRPTW formulation is adopted from Schneider et al. (2014) and the objective function is
changed to minimize energy. EVRPTW can be defined on a complete directed graph G = (V ′0,n+1,A), where
V ′0,n+1 = V ∪ F’ ∪ {0, n+1} is the set of vertices, V = {1, . . . , n} denotes the set of customers, and F’ a
set of dummy recharging stations generated that allows several visits to each recharging station in the set
F. Vertices 0 and n+1 denote the same depot, and all routes start at 0 and end at n+1. To indicate that a
set contains 0 and/or n +1, the set is subscripted with the respective instance of depot. A = {(i, j) | i and
j ∈ V ′0,n+1 i 6= j} is the set of arcs. Each arc (i, j) is associated with distance dij and travel time tij . Total
energy consumed for traveling on each arc is (αxij + βuj)tij , where α and β are constant and coefficient of
weight respectively in energy consumption estimation function. uj is the load carried by vehicle till customer
j. Finally, xij is the binary decision variable that is 1 if and only if a route exits between vertex i and j. τi,
yi, si, qi, ei and li are time of arrival, charge left, service time, demand, earliest arrival and latest arrival at
vertex i respectively. Q is the total battery capacity and C is the load capacity of the vehicle.
The mixed-integer program formulation of EVRPTW is as follows:

min
∑

i∈V ′
0 ,j∈V ′

n+1,i6=j

(αxij + βuj)tij (4)
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Subject to: ∑
j∈V ′

n+1i 6=j

xij = 1 ∀i ∈ V, (5)

∑
j∈V ′

n+1i 6=j

xij ≤ 1 ∀i ∈ F ′, (6)

∑
i∈V ′

0 i 6=j

xij =
∑

i∈V ′
n+1i6=j

xji ∀j ∈ V ′, (7)

τi + (tij + si)xij − ln+1(1− xij) ≤ τj ∀i ∈ V0, j ∈ V ′n+1, i 6= j, (8)

τi + tijxij + g(Q− yi)− (ln+1 + gQ)(1− xij) ≤ τj ∀i ∈ F ′, j ∈ V ′n+1, i 6= j, (9)

ej ≤ τj ≤ lj ∀j ∈ V ′0,n+1, (10)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′0 , j ∈ V ′n+1, i 6= j, (11)

0 ≤ u0 ≤ C, (12)

0 ≤ yj ≤ yi − (αxij + βuj)dij +Q(1− xij) ∀i ∈ V, j ∈ V ′n+1, i 6= j, (13)

0 ≤ yj ≤ Q− (αxij + βuj)dij ∀i ∈ F ′0, j ∈ V ′n+1, i 6= j, (14)

xij ∈ {0, 1} ∀i ∈ V ′0 , j ∈ V ′n+1, i 6= j (15)

The objective (4) minimizes the total energy required. Constraints (5) enforce that each customer is
visited exactly once and constraints (6) ensure that a copy of recharge station is visited at most once.
Constraints (7) establish flow conservation at each vertex, the number of incoming vehicles is equal to the
number of outgoing vehicles. Constraints (8) and (9) ensures time feasibility for vehicles leaving customers
and the depot, and vehicles leaving recharging stations respectively. Recharge times are for a complete
recharge from the charge level yi to Q with a recharging rate g. Constraints (10) enforce that deliveries
are done within the time window at each vertex. Further, the formation of sub-tours is also eliminated
by constraints (8)-(10). Constraints (11) and (12) ensure demand satisfaction at all customers by assuring
a non-negative load on arrival at all vertex including the depot. Finally, battery charge is tracked and
constraints (13) and (14) ensure the charge never runs out.

2.4. Solution Algorithm

Adaptive Large Neighborhood Search (ALNS) introduced by Ropke and Pisinger (2006) is one of the
most effective heuristics for solving large-scale vehicle routing problems. The present implementation of
ALNS has few challenges such as battery constraint and multiple recharge station visits. Few new operators
are introduced and few operators are adopted from the literature Keskin and Çatay (2016); Ropke and
Pisinger (2006) to overcome these challenges.

2.4.1. Initial solution

A greedy algorithm is used to find the initial solution. First, a node that is closest to the depot is
selected and added to the solution. Next, a list of all the possible customers (who satisfy the time window
and capacity constraints) that can be inserted are found and sorted in terms of closeness to the present
customer. The first customer that satisfies all the constraints ((8) to (14)) is removed from the sorted list
and is added to the solution. In case, if any delivery to a customer fails due to battery constraint, a recharge
station would be inserted before the present customer. Even after inserting recharge station, if any customer
in the solution fails to satisfy the constraints, a new route would be created. Algorithm 1 presents the pseudo
code of initial solution algorithm.

2.4.2. Overview of algorithm

The initial solution generated by the greedy algorithm is used as input for the ALNS. ALNS improves
the solution iteratively by destroying and recreating the solution. It uses two types of operators: (i) removal
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Algorithm 1 Greedy Algorithm for Initial Solution

1: Start a new route with a customer closest to the depot
2: repeat
3: Generate the list of all feasible customers from the list of unserved customers
4: if no feasible customer exists then
5: Start a new route with an unserved customer closest to the depot
6: else
7: if feasible after station insertion then
8: Insert the station that is nearest to previous customer and the customer that increases power required

by least
9: else

10: Insert the customer such that the increase in total power required is least
11: end if
12: end if
13: until all the customers are served

operators and (ii) insertion operators for both customers and recharge stations. These operators destroy
the solution by removing a certain number of customers/recharge stations from the solution based on the
operator type. In next step, all these removed customers are added to a customer pool, which is later used in
insertion stage. Total iterations are divided into m segments and the scores of all the operators used are set
to zero at the start of each segment. The average score obtained at the end of each segment is used to update
the weights. The probability of selecting an operator using a roulette wheel selection is po=Wo/(

∑
iWi),

where po is the probability of selecting operator o and Wi is the weight of operator i. Record-to-record
acceptance is used as acceptance criteria for new solutions. This criterion accepts any solution that is no
worse than α% of the current solution. Algorithm 2 presents the pseudo code of ALNS algorithm.

2.4.3. Customer removal operators

Random removal, related removal, worst distance removal, and least time window removal are the op-
erators used. The first three are introduced by Ropke and Pisinger (2006) and we have introduced a new
removal operator namely, least time window removal. All these operators remove P (= min ([0.4Tc, 60]),
where Tc is total customers) customers from their existing position and add them to the customer pool.
The method of removal of customers from a solution varies from operator to operator. In random removal,
P customers are randomly selected and then removed; in related removal, first, a seed customer is randomly
picked from the total customers. Then, P-1 nearest customers to the random seed are removed; in worst
distance removal, removal gain (defined as the cost difference with and without the customer in the solution)
is calculated for all the customers. Then, first P customers with highest removal gain are removed; in the
least time window removal, first P customers with least time windows gap are removed.

2.4.4. Recharge station removal operators

Recharge station is a vital component in electric vehicle routes. Hence, removal and insertion of these
stations may significantly affect the solution and can lead to better solutions. These operators (random
station removal, worst station removal, and worst charge usage station removal) are used after every N
consecutive non-improvement iterations. These will work similar to their counterparts in customer removal
operators. First, Q (=min ([0.4Ts, 10]), where Ts is total recharge stations) recharge stations are removed
from the solution and the solution is updated. Random station removal removes a total of Q recharge
stations from all the routes. In worst station removal, power required to visit all the recharge stations from
its preceding customers is calculated. Then, Q recharge stations that require the highest power are removed
and the solution is updated. Finally, in worst charge usage station removal, all recharge station visited are
arranged in decreasing order of charge remaining before visiting the recharge station. Then, first Q recharge
stations in the ordered list are removed and the solution is updated.
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Algorithm 2 Adaptive Large Neighborhood Search

1: Read input data, initialize weights and scores
2: Generate an initial solution using bin packing approach (S)
3: Make initial solution as best solution S∗ ← S
4: j = 0 . j - Number of iterations allowed without improvement
5: for i← 0,MaxIterations do
6: if j = N then . N - Maximum iterations allowed without improvement
7: Call station removal operator (Sip)
8: Call station insertion operator (Si)
9: else

10: if j % K = 0 then . K - Predefined iteration interval
11: Call route removal operator (Sip)
12: Call customer insertion operator (Si)
13: else
14: Call customer removal operator (Sip)
15: Call customer insertion operator (Si)
16: end if
17: end if
18: if Si ≤ (1+α)S then
19: S ← Si

20: j ← 0 and update score
21: else if j = N then
22: S ← Si

23: j ← 0 and update score
24: else
25: j += 1
26: end if
27: if S < S∗ then
28: S∗ ← S
29: end if
30: if i % Z = 0 then . Z - Weights update interval
31: Update weights based on scores
32: end if
33: end for

2.4.5. Route removal operators

Route removal operators used in the study are random route removal Ropke and Pisinger (2006) and
greedy route removal Keskin and Çatay (2016). These operators are performed once after every K iterations.
A total of W ([0.1Tr, 0.4Tr], where Tr is total routes) routes are removed from the solution along with
corresponding recharge stations. Customers in those routes are added to customer pool and the solution is
updated. In random route removal, W routes are randomly removed from the solution, whereas in case of
greedy route removal first W routes with the lowest number of customers visited are removed.

2.4.6. Customer insertion operators

Insertion operators reconstruct the solution with the customers in customer pool. Insertion operators
used in this study are taken from literature Ropke and Pisinger (2006). These operators include greedy in-
sertion, greedy insertion perturbation, and regret-k insertion. Greedy insertion randomly selects a customer
from the customer pool and is inserted at a position that increases the power required by the least and
satisfies the constraints for all the customers on that route. The main difference between greedy insertion
and greedy insertion perturbation is the latter multiplies the cost of insertion by a factor d ([0.8, 1.2]) in
order to further randomize the search. Regret-k insertion overcomes the myopic nature of greedy insertion
by selecting the customer for insertion based on the regret value (cost difference between the best insertion
and the kth best insertion). A new insertion operator based on time window is introduced called as regret-k
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time window insertion. It is similar to the regret-k insertion, but the former considers the difference in
possible arrival time to due time for the best insertion to kth best insertion. Last two operators i.e., regret-k
and regret-k time window operators avoid cases of inserting customers at poor positions.

All these insertion operators will confirm that the new insertion will not violate any of the battery,
time window, and capacity constraints before inserting the new customer into the solution. A new recharge
station can be inserted if it helps in avoiding violation of battery constraint.

2.4.7. Station insertion operators

Removal of recharge stations from the solution will make the solution infeasible with respect to the
battery constraint. Recharge station insertion operators help in making the solution feasible by inserting
new recharge stations where ever required. The operators used here are best insertion operator Keskin
and Çatay (2016) and a new operator called compare-k insertion that is proposed in the present study.
Compare-k insertion compares the increase in cost by inserting a recharge station for k positions before
the customer, where battery charge required to travel to the next customer is more than the available
charge. Recharge station insertion is done before the customer that leads to least increase in cost upon
satisfying all the constraints. The best insertion operator identifies and inserts the recharge station at the
best possible position between previous recharge station and customer where battery level drops to negative.
If no previous recharge station exists in solution, then the insertion is done between depot and customer.
Both operators check for feasibility of solution after the station insertion. If no station can be inserted
feasibly, the algorithm returns to the previous feasible solution.

3. Computational Results

Performance of the proposed ALNS was validated using the benchmark instances introduced in Schneider
et al. (2014). Benchmark instances consist of 56 large size instances in three sets, and these are modified
versions of the well-known VRPTW instances of Solomon (1987). All of these instances have 100 customers
and 21 recharging stations distributed over a 100 x 100 grid. The main difference among these three sets
is how the customers are distributed in the 100 x 100 grid: (i) first set has customers in clusters (C), (ii)
second set has customers randomly distributed (R), and (iii) third set has customers both clustered and
randomly distributed (RC). Each of these sets has two subsets, type 1 and type 2, which differ by length of
the time windows, vehicle load, and battery capacities. A comparison of results obtained is made with the
benchmark reported in the literature Schneider et al. (2014).

The algorithm is coded in the Python programming language and all the instances were run on a system
with a configuration of 3.6 GHz Intel Processor, 64 GB RAM running Windows 10. The algorithm was run
for 25000 iterations and best of three solutions is reported here. The solutions that are an improvement
over or same as Best Known Solution (BKS) are shown in bold.

Benchmark instances are available only for the distance minimization case. Hence, in order to compare
the performance of the proposed ALNS, we modified the objective of ALNS to distance minimization and
ran for those instances. In order to check the impact of the new operators introduced, we have tested ALNS
with and without the new operators and the results are shown in table 1. Results show that the use of new
operators has led to an average improvement in solution by 9.97% for type-1 and 3.12% in type-2 instances.
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Table 1: Comparison of ALNS with and without new operators

Instances ALNS
ALNS
with new
operators

%dev Instances ALNS
ALNS
with new
operators

%dev

C101 1189 1053 11.42 C201 787 645 18.06
C102 1096 1069 2.44 C202 744 645 13.33
C103 1060 1066 -0.57 C203 739 683 7.61
C104 931 908 2.42 C204 654 661 -1.07
C105 1173 1095 6.66 C205 759 641 15.56
C106 1180 1057 10.42 C206 761 672 11.70
C107 1107 1092 1.37 C207 728 741 -1.81
C108 1012 1041 -2.87 C208 714 714 0.00
C109 981 981 0.00
R101 2108 1671 20.72 R201 1146 1145 0.09
R102 1967 1785 9.25 R202 1053 1029 2.24
R103 1717 1299 24.33 R203 929 917 1.30
R104 1406 1088 22.60 R204 752 756 -0.59
R105 1886 1461 22.55 R205 1003 1007 -0.41
R106 1650 1516 8.11 R206 978 950 2.87
R107 1517 1155 23.86 R207 847 827 2.42
R108 1282 1050 18.09 R208 750 754 -0.59
R109 1667 1539 7.69 R209 912 896 1.75
R110 1415 1342 5.16 R210 883 881 0.28
R111 1438 1322 8.08 R211 778 775 0.40
R112 1330 1050 21.05
RC101 2180 1731 20.58 RC201 1349 1326 1.68
RC102 1928 1801 6.58 RC202 1226 1189 3.03
RC103 1561 1553 0.51 RC203 929 989 2.67
RC104 1385 1239 10.56 RC204 1117 911 1.91
RC105 1874 1732 7.55 RC205 1016 1146 -0.30
RC106 1810 1757 2.92 RC206 1143 1108 0.76
RC107 1500 1448 3.49 RC207 960 941 1.97
RC108 1408 1210 14.03 RC208 845 850 -0.64
Average 9.97 3.12
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Table 2 shows the results of ALNS in comparison with BKS. Instances in column one are type-1 instances
that have shorter time windows, electric vehicles with lower load limit and shorter range for each charge.
Instances in column five are type-2 instances that have larger time windows at each customer and electric
vehicles with higher load limit having longer range for each charge. Column four and eight show the deviation
in ALNS result compared to BKS. From Table 2, it is clear that the ALNS has a comparable performance
with the previous algorithms. Out of 56 instances tested, ALNS found 14 new solutions and 15 same as best
known solutions.

Table 2: ALNS vs Best Known Solutions (BKS)

Instances BKS ALNS %dev Instances BKS ALNS %dev

C101 1053 1053 0.00 C201 645 645 0.00
C102 1056 1069 -1.23 C202 645 645 0.00
C103 1041 1066 -2.40 C203 644 683 -6.06
C104 979 908 7.25 C204 636 661 -3.93
C105 1075 1095 -1.86 C205 641 641 0.00
C106 1057 1057 0.00 C206 638 672 -5.33
C107 1031 1092 -5.92 C207 638 741 -16.14
C108 1100 1041 5.36 C208 638 714 -11.91
C109 1036 981 5.31
R101 1671 1671 0.00 R201 1265 1145 9.49
R102 1495 1785 -19.40 R202 1052 1029 2.19
R103 1299 1299 0.00 R203 896 917 -2.34
R104 1088 1088 0.00 R204 791 756 4.42
R105 1461 1461 0.00 R205 989 1007 -1.82
R106 1345 1516 -12.71 R206 925 950 -2.70
R107 1155 1155 0.00 R207 849 827 2.59
R108 1050 1050 0.00 R208 737 754 -2.31
R109 1294 1539 -18.93 R209 872 912 -4.59
R110 1127 1342 -19.08 R210 847 881 -4.01
R111 1106 1322 -19.53 R211 847 775 8.50
R112 1050 1050 0.00
RC101 1731 1731 0.00 RC201 1445 1326 8.24
RC102 1555 1801 -15.82 RC202 1413 1189 15.85
RC103 1351 1553 -14.95 RC203 1074 989 7.91
RC104 1239 1239 0.00 RC204 885 911 -2.94
RC105 1475 1732 -17.42 RC205 1322 1146 13.31
RC106 1438 1757 -22.18 RC206 1191 1108 6.97
RC107 1276 1448 -13.48 RC207 996 941 5.52
RC108 1210 1210 0.00 RC208 838 850 -1.43
Average -5.76 0.72

A comparison between the energy minimizing and distance minimizing objectives in terms of energy
required and vehicles used are shown in Table 3. Results clearly show that minimizing energy instead of
distance leads to less energy consumption but at the cost of increase in the number of vehicles used. There
is an average saving of 2.06% in energy with an average increase in the number of vehicles by 10.68% in the
tested instances. However, there are 30 cases with either reduced or same number of vehicles along with the
reduction in energy consumption. The variation in the number of vehicles and the energy consumed depends
greatly on how the customers are distributed and the time window in which they accept the deliveries. The
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problem considered has no limitations on the number of vehicles that can be used and hence the algorithm
used more vehicles given that it decreases the total energy required. Many vehicles with smaller loads
can result in lower energy consumption than few vehicles with heavy loads. The former is used by energy
minimization case, whereas the latter is used by distance minimization since it leads to lesser empty return
trips and hence total distance.
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Table 3: Energy and vehicles required in distance and energy minimization

Instances
Distance min. Energy min.

%dev energy %dev vehicles
Energy Vehicles Energy Vehicles

C101 97.21 12 89.10 13 8.34 -8.33
C102 89.40 12 87.45 12 2.18 0.00
C103 88.01 12 87.65 12 0.41 0.00
C104 76.20 10 75.43 10 1.01 0.00
C105 94.89 12 89.57 12 5.60 0.00
C106 94.62 11 88.68 12 6.27 -9.09
C107 89.45 12 89.17 12 0.31 0.00
C108 95.24 11 89.82 12 5.69 -9.09
C109 81.38 12 80.85 11 0.65 -9.09
C201 68.58 4 68.21 7 0.54 -75.00
C202 66.43 4 66.25 6 0.27 -50.00
C203 64.30 5 62.95 6 2.09 -20.00
C204 65.03 4 62.98 5 3.15 -25.00
C205 67.32 4 65.55 6 2.63 -50.00
C206 64.90 5 63.27 6 2.51 -20.00
C207 66.51 6 66.15 7 0.55 -16.67
C208 67.52 6 65.90 5 2.39 16.67
R101 165.51 18 164.65 25 0.52 -39.89
R102 141.26 22 140.59 22 0.48 0.00
R103 127.87 13 127.18 20 0.54 -53.85
R104 108.78 11 106.97 14 1.66 -27.27
R105 135.09 14 133.53 21 1.16 -50.00
R106 129.75 18 120.26 19 7.31 -5.56
R107 114.85 12 109.48 16 4.68 -33.33
R108 107.31 11 104.33 14 2.78 -27.27
R109 123.35 17 122.14 18 0.98 -5.88
R110 109.87 15 108.01 15 1.69 0.00
R111 110.23 15 106.12 14 3.72 6.67
R112 101.65 11 101.62 14 0.03 -27.27
R201 137.31 9 134.19 10 2.27 -11.11
R202 126.99 8 126.32 8 0.52 0.00
R203 114.18 7 112.16 7 1.77 0.00
R204 102.77 5 102.70 5 0.07 0.00
R205 126.60 8 125.90 7 0.55 12.50
R206 119.89 7 118.12 7 1.48 0.00
R207 112.12 6 109.13 6 2.66 0.00
R208 105.48 5 103.40 5 1.97 0.00
R209 114.82 7 114.65 7 0.14 0.00
R210 112.87 6 110.61 7 2.00 -16.67
R211 108.24 5 105.39 5 2.64 0.00
RC101 161.36 16 151.52 20 6.10 -25.00
RC102 147.72 17 143.88 18 2.60 -5.88
RC103 125.80 15 125.01 16 0.62 -6.67
RC104 111.70 11 110.50 14 1.07 -27.27
RC105 140.83 18 139.04 17 1.27 5.56
RC106 140.85 18 140.07 18 0.55 0.00
RC107 125.27 15 117.06 15 6.55 0.00
RC108 114.88 11 110.66 14 3.68 -27.27
RC201 166.14 10 162.59 9 2.14 10.00
RC202 155.06 9 154.37 9 0.44 0.00
RC203 133.69 7 133.34 7 0.26 0.00
RC204 123.41 7 121.60 7 1.46 0.00
RC205 146.82 8 146.02 8 0.55 0.00
RC206 150.17 7 147.97 7 1.47 0.00
RC207 128.51 7 128.01 6 0.40 14.29
RC208 118.85 6 118.62 6 0.19 0.00
Average 2.06 -10.68
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4. Conclusion

The present study introduced an Adaptive Large Neighborhood Search (ALNS) algorithm with three
new operators (least time window removal, regret-k time window removal, and compare-k insertion) to solve
the Electric Vehicle Routing Problem with Time Windows (EVRPTW). The new operators had led to an
improvement in solution by 9.97% and 3.12% for type-1 and type-2 instances respectively. ALNS was tested
on 56 benchmark instances and it found a better solution for 14 instances and for 15 instances the solutions
matched the best-known solutions. Overall, the proposed algorithm showed comparable performance with
the existing algorithms in distance minimization case. In energy minimization objective, the algorithm
resulted in an average energy savings of 2.06% albeit at the cost of increase in the number of vehicles being
used (10.68%). Since the formulation does not limit the number of vehicles that can be used, the present
algorithm realized solutions that utilize more vehicles. The increase in the number of vehicles compared to
distance minimization can also be attributed to the use of load in power requirement calculations.

One of the main limitations of ALNS is it does not minimize the number of vehicles used. Few possible
ways of extending this work are to combine ALNS with a low-performance heuristic to help in minimizing
the vehicles required. Another extension is the inclusion of acceleration/deceleration patterns that may lead
to better estimation of power required that can alter the final routes.
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